Exam preparation sheet - Solutions Part 6

0.1 Stationarity, Ergodicity, Spectral measure and spectral density

Solutions: (a) (i) X is not stationary. Since $\mathbb{E} X_{n}=0$ and $\operatorname{Var}\left(X_{n}\right)=1$ is constant, we have to compute the more complicated covariances. Note that by independence, $\operatorname{Cov}\left(X_{1}, X_{2}\right)=$ $\frac{1}{\sqrt{2}} \operatorname{Cov}\left(\varepsilon_{1}, \varepsilon_{1}+\varepsilon_{2}\right)=\frac{1}{\sqrt{2}}$, but $\operatorname{Cov}\left(X_{2}, X_{3}\right)=\frac{1}{\sqrt{2} \sqrt{3}} \operatorname{Cov}\left(\varepsilon_{1}+\varepsilon_{2}, \varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3}\right)=\frac{1}{\sqrt{6}}\left(\operatorname{Var}\left(\varepsilon_{1}\right)+\right.$ $\left.\operatorname{Var}\left(\varepsilon_{2}\right)\right)=\frac{2}{\sqrt{6}}$, thus $\operatorname{Cov}\left(X_{1}, X_{2}\right) \neq \operatorname{Cov}\left(X_{2}, X_{3}\right)$ and X cannot be stationary.
(ii) We have $\operatorname{Var}\left(X_{n}\right)=n^{2} \operatorname{Var}\left(\varepsilon_{n}\right)=n^{2}$ which is not constant in n, thus X is not stationary.
(iii) Since $\left(\varepsilon_{n}\right)_{n \in \mathbb{N}}$ is an i.i.d. sequence, it is stationary and ergodic. The function $g: \mathbb{R}^{2} \rightarrow$ $\mathbb{R}, g(x, y)=x^{2}+y^{2}$ is measurable and for all $n \in \mathbb{N}_{0}$ it holds that $X_{n}=g\left(\varepsilon_{n}, \varepsilon_{n+1}\right)$. Thus X is stationary and ergodic as a filter of a stationary and ergodic sequence.
(iv) X is stationary since for all $n \in \mathbb{N}_{0}$ and $k \in \mathbb{N}_{0}$ we have $\mathbb{P}^{\left(X_{n}, \ldots, X_{n+k}\right)}=\mathbb{P}^{\left(\varepsilon_{0}, \ldots, \varepsilon_{0}\right)}=$ $\mathbb{P}^{\left(X_{0}, \ldots, X_{k}\right)} . X$ is not ergodic. Proof: If X would be ergodic, the ergodic theorem would imply that $\varepsilon_{0}=\frac{1}{n} \sum_{i=1}^{n} \varepsilon_{0}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \rightarrow \mathbb{E}\left[X_{i}\right]=\mathbb{E} \varepsilon_{0}=0$, i.e. $\varepsilon_{0}=0$. This would imply that $\operatorname{Var}\left(\varepsilon_{0}\right)=0$ in contradiction to $\operatorname{Var}\left(\varepsilon_{0}\right)=1$.
Remark: Another possibility is to directly argue with the shift transformation (cf. Exercise Sheet 1, Task $4(a))$: Let $M \in \mathcal{B}(\mathbb{R})$ be arbitrary with $\mathbb{P}\left(\varepsilon_{0} \in M\right) \notin\{0,1\}$. Such a set M exists since ε_{0} is not a.s. constant (it has positive variance). Define $A:=\prod_{n \in \mathbb{N}_{0}} M \in \mathcal{B}\left(\mathbb{R}^{\mathbb{N}_{0}}\right)$. The shift transformation $T: \mathbb{R}^{\mathbb{N}_{0}} \rightarrow \mathbb{R}^{\mathbb{N}_{0}},\left(x_{n}\right)_{n \in \mathbb{N}_{0}} \mapsto\left(x_{n+1}\right)_{n \in \mathbb{N}_{0}}$ satisfies $T^{-1}(A)=A$, but

$$
\mathbb{P}^{\left(X_{n}\right)_{n \in \mathbb{N}_{0}}}(A)=\mathbb{P}\left(\forall n \in \mathbb{N}_{0}: X_{n} \in M\right)=\mathbb{P}\left(\varepsilon_{0} \in M\right) \notin\{0,1\} .
$$

This is a contradiction to ergodicity.
(v) X is stationary. Proof: We restrict ourselves to the case that n is odd and k is odd (all other combinations are similarly proven or trivial). In this case, it holds that $\left(X_{n}, \ldots, X_{n+k}\right)=$ $\left(\varepsilon_{1}, \varepsilon_{0}, \ldots, \varepsilon_{1}, \varepsilon_{0}\right)$. It follows by independence that $\mathbb{P}^{\left(\varepsilon_{0}, \varepsilon_{1}\right)}=\mathbb{P}^{\varepsilon_{0}} \otimes \mathbb{P}^{\varepsilon_{1}}=$
$I P^{\varepsilon_{1}} \otimes \mathbb{P}^{\varepsilon_{0}}=\mathbb{P}^{\left(\varepsilon_{1}, \varepsilon_{0}\right)}$. Application of $g(x, y)=(y, x, \ldots, y, x)$ on $\left(\varepsilon_{0}, \varepsilon_{1}\right)$ and $\left(\varepsilon_{1}, \varepsilon_{0}\right)$ shows that also $g\left(\varepsilon_{0}, \varepsilon_{1}\right)=\left(\varepsilon_{1}, \varepsilon_{0}, \ldots, \varepsilon_{1}, \varepsilon_{0}\right)=\left(X_{n}, \ldots, X_{n+k}\right)$ and $g\left(\varepsilon_{1}, \varepsilon_{0}\right)=\left(\varepsilon_{0}, \varepsilon_{1}, \ldots, \varepsilon_{0}, \varepsilon_{1}\right)=\left(X_{0}, \ldots, X_{k}\right)$ have the same distribution.
X is not ergodic. Proof: Let $M \in \mathcal{B}(\mathbb{R})$ be arbitrarily chosen with $\mathbb{P}\left(\varepsilon_{0} \in M\right) \notin\{0,1\}$. Such a set M exists since ε_{0} is not constant a.s. Define $A:=\prod_{n \in \mathbb{N}_{0}} M \in \mathcal{B}\left(\mathbb{R}^{\mathbb{N}_{0}}\right)$. Obviously, the shift transformation $T: \mathbb{R}^{\mathbb{N}_{0}} \rightarrow \mathbb{R}^{\mathbb{N}_{0}},\left(x_{n}\right)_{n \in \mathbb{N}_{0}} \mapsto\left(x_{n+1}\right)_{n \in \mathbb{N}_{0}}$ fulfills $T^{-1}(A)=A$. But we have

$$
\mathbb{P}^{\left(X_{n}\right)_{n \in \mathbb{N}_{0}}}(A)=\mathbb{P}\left(\forall n \in \mathbb{N}_{0}: X_{n} \in M\right)=\mathbb{P}\left(\varepsilon_{0} \in M, \varepsilon_{1} \in M\right)=\mathbb{P}\left(\varepsilon_{0} \in M\right)^{2} \notin\{0,1\}
$$

which is a contradiction to ergodicity.
Note that

$$
c(k)=\operatorname{Cov}\left(X_{0}, X_{k}\right)=\left\{\begin{array}{ll}
1, & k \text { even, } \\
0, & k \text { odd }
\end{array}=\frac{1}{2}\left(1+(-1)^{k}\right) .\right.
$$

does not converge to 0 for $k \rightarrow \infty$, thus $\sum_{k \in \mathbb{Z}}|c(k)|=\infty$. Thus a spectral density may not exist. We therefore directly calculate the spectral measure by making the approach $F_{X}=$
$a \delta_{\omega}+a \delta_{-\omega}+b \delta_{0}$ with some $a, b \geq 0$ and $\omega \in(0, \pi]$ and Dirac measures δ. The spectral measure has to fulfill

$$
\frac{1}{2}\left(1+(-1)^{k}\right)=c(k)=\int_{-\pi}^{\pi} e^{i \lambda k} \mathrm{~d} F_{X}(\lambda)=b+a\left(e^{i \omega k}+e^{-i \omega k}\right)=b+2 a \cos (\omega k)
$$

Since $\cos (\pi k)=(-1)^{k}$, we see that $\omega=\pi, b=\frac{1}{2}$ and $a=\frac{1}{4}$, i.e. $F_{X}=\frac{1}{4}\left(\delta_{\pi}+\delta_{-\pi}\right)+\frac{1}{2}$.
(vi) Since $\left(\varepsilon_{n}\right)_{n \in \mathbb{N}}$ is an i.i.d. sequence, it is stationary and ergodic. The function $g: \mathbb{R}^{2} \rightarrow$ $\mathbb{R}, g(x, y)=x+\alpha y$ is measurable and for all $n \in \mathbb{N}_{0}$ it holds that $X_{n}=g\left(\varepsilon_{n}, \varepsilon_{n-1}\right)$. Thus X is stationary and ergodic as a filter of a stationary and ergodic sequence.
We have $\mathbb{E} X_{n}=\mathbb{E} \varepsilon_{n}+\alpha \mathbb{E} \varepsilon_{n-1}=0$, and $c(0)=\operatorname{Var}\left(X_{n}\right)=1+\alpha^{2}$ and $c(1)=\operatorname{Cov}\left(X_{0}, X_{1}\right)=$ $\operatorname{Cov}\left(\varepsilon_{0}+\alpha \varepsilon_{-1}, \varepsilon_{1}+\alpha \varepsilon_{0}\right)=\alpha$. By independence of the $\varepsilon_{i}, c(k)=0$ for $k \geq 2$. Thus $\sum_{k \in \mathbb{Z}}|c(k)|=$ $|c(0)|+2|c(1)|<\infty$, and there exists a spectral density of the form $f_{X}(\lambda)=\frac{1}{2 \pi} \sum_{k \in \mathbb{Z}} c(k) e^{i \lambda k}=$ $\frac{1}{2 \pi}(c(0)+2 c(1) \cos (\lambda))=\frac{1}{2 \pi}\left(\left(1+\alpha^{2}\right)+2 \alpha \cos (\lambda)\right)$.
(vii) Since $\left(\varepsilon_{n}\right)_{n \in \mathbb{N}}$ is an i.i.d. sequence, it is stationary and ergodic. The function $g: \mathbb{R}^{3} \rightarrow$ $\mathbb{R}, g(x, y, z)=\mathbb{1}_{\{x>z\}}$ is measurable and for all $n \in \mathbb{N}_{0}$ it holds that $X_{n}=g\left(\varepsilon_{n}, \varepsilon_{n+1}, \varepsilon_{n+2}\right)$. Thus X is stationary and ergodic as a filter of a stationary and ergodic sequence.
We have $\mathbb{E}\left[X_{n}\right]=\mathbb{P}\left(\varepsilon_{n}>\varepsilon_{n+2}\right)=\frac{1}{2}$ by symmetry ($\varepsilon_{n}, \varepsilon_{n+2}$ are i.i.d.) and
$c(0)=\operatorname{Var}\left(X_{0}\right)=\mathbb{E}\left[X_{0}^{2}\right]-\mathbb{E}\left[X_{0}\right]^{2}=\mathbb{P}\left(\varepsilon_{0}>\varepsilon_{2}\right)-\mathbb{E}\left[X_{0}\right]^{2}=\frac{1}{2}-\frac{1}{4}=\frac{1}{4}$.
$c(1)=\operatorname{Cov}\left(X_{0}, X_{1}\right)=0, c(k)=\operatorname{Cov}\left(X_{0}, X_{k}\right)=0$ for $k \geq 3$ since X_{0}, X_{k} are independent in these cases.
$\mathbb{E}\left[X_{0} X_{2}\right]=\mathbb{P}\left(\varepsilon_{0}>\varepsilon_{2}>\varepsilon_{4}\right)=\frac{1}{6}$ (by symmetry, there are 6 possible orders for the i.i.d. variables $\left.\varepsilon_{0}, \varepsilon_{2}, \varepsilon_{4}\right)$, thus $c(2)=\operatorname{Cov}\left(X_{0}, X_{2}\right)=\mathbb{E}\left[X_{0} X_{2}\right]-\mathbb{E}\left[X_{0}\right]^{2}=\frac{1}{6}-\frac{1}{4}=-\frac{1}{12}$.
We obtain that $\sum_{k \in \mathbb{Z}}|c(k)|=|c(0)|+2|c(2)|<\infty$, thus the spectral density exists and has the form $f_{X}(\lambda)=\frac{1}{2 \pi} \sum_{k \in \mathbb{Z}} c(k) e^{i \lambda k}=\frac{1}{2 \pi}(c(0)+2 c(2) \cos (2 \lambda))=\frac{1}{2 \pi}\left(\frac{1}{4}-\frac{1}{6} \cos (2 \lambda)\right)$.
(viii) X is not stationary since $\operatorname{Var}\left(X_{n}\right)=\operatorname{Var}\left(B_{n}\right)=n$ (recall that the Brownian motion fulfills $B_{n} \sim N(0, n)$), i.e. the variance of X_{n} is not constant in n.
(ix) Note that $D_{n}:=B_{n+1}-B_{n} \stackrel{\text { iid }}{\sim} N(0,1)$ for $n \in \mathbb{N}_{0}$. Thus $\left(D_{n}\right)_{n \in \mathbb{N}_{0}}$ is an i.i.d. sequence and thus stationary and ergodic. The function $g: \mathbb{R}^{2} \rightarrow \mathbb{R}, g(x, y)=x+y$ is measurable and $X_{n}=g\left(D_{n}, D_{n+1}\right)$ for all $n \in \mathbb{N}_{0}$. Thus X is stationary and ergodic as a filter of a stationary and ergodic sequence.
(x) X is not stationary since $\operatorname{Var}\left(X_{2 n}\right)=\operatorname{Var}\left(B_{2 n}-B_{n}\right)=n$ is not constant in n (recall that $\left.B_{2 n}-B_{n} \sim N(0, n)\right)$.
(b) (i) $\left(U_{i}\right)_{i \in \mathbb{Z}}$ is an i.i.d. sequence and thus stationary and ergodic. The function $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$, $g(x, y)=x \mathbb{1}_{\{|x| \leq a\}}+y \mathbb{1}_{\{|x|>a\}}$ is measurable and $X_{i}=g\left(U_{i}, U_{i-1}\right)$ for $i \in \mathbb{Z}$, thus X is stationary as a filter of a stationary sequence.
(ii) Since $\left(X_{i}\right)_{i \in \mathbb{Z}}$ is stationary and ergodic, the same holds for $\left(\left|X_{i}\right|\right)_{i \in \mathbb{Z}}$. The ergodic theorem implies that $\frac{1}{n} \sum_{i=1}^{n}\left|X_{i}\right| \rightarrow \mathbb{E}\left|X_{0}\right|$ a.s. Here, we have

$$
\mathbb{E}\left|X_{0}\right|=\underbrace{\mathbb{E}\left|U_{0}\right| \mathbb{1}_{\left\{\left|U_{0}\right| \leq a\right\}}}_{=\frac{1}{2 a} \int_{0}^{a} u \mathrm{~d} u=\frac{a}{4}}+\mathbb{E}\left|U_{-1}\right| \mathbb{E} \mathbb{1}_{\left\{\left|U_{0}\right|>a\right\}}=\frac{a}{4}+a \cdot \frac{1}{2}=\frac{3 a}{4} .
$$

(this is a finite value, which justifies the application of the ergodic theorem). We conclude that $\hat{a}_{n}=\frac{4}{3} \cdot \frac{1}{n} \sum_{i=1}^{n}\left|X_{i}\right| \rightarrow a$ a.s.
(c) (i) $\left(U_{i}\right)_{i \in \mathbb{Z}}$ is an i.i.d. sequence and thus stationary and ergodic. The function $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$, $g(x, y)=\mathbb{1}_{\{x<a y\}}$ is measurable and $X_{i}=g\left(U_{i}, U_{i-1}\right)$ for $i \in \mathbb{Z}$, thus X is stationary as a filter of a stationary sequence.
(ii) Since $\left(X_{i}\right)_{i \in \mathbb{Z}}$ is stationary and ergodic and $g: \mathbb{R}^{2} \rightarrow \mathbb{R}, g(x, y)=x y$ is measurable, we obtain that $Y_{i}:=X_{i} X_{i-1}=g\left(X_{i}, X_{i-1}\right)$ is stationary and ergodic. Furthermore we have $\mathbb{E}\left|Y_{0}\right| \leq 1<\infty$ since $\left|X_{i}\right| \leq 1$. Thus the ergodic theorem is applicable to $\left(Y_{i}\right)$ and yields

$$
\frac{1}{n} \sum_{i=1}^{n} X_{i} X_{i-1}=\frac{1}{n} \sum_{i=1}^{n} Y_{i} \rightarrow \mathbb{E}\left[Y_{0}\right]=\mathbb{E}\left[X_{0} X_{1}\right]=\stackrel{\text { see above calc. }}{=} \frac{a^{3}}{6} \quad \text { a.s. }
$$

Since $g(x)=(6 x)^{1 / 3}$ is continuous, we obtain that

$$
\hat{a}_{n}=g\left(\frac{1}{n} \sum_{i=1}^{n} X_{i} X_{i-1}\right) \rightarrow g\left(\frac{a^{3}}{6}\right)=a \quad \text { a.s. }
$$

Homepage of the lecture:

http://math.uni-heidelberg.de/stat/studinfo/teaching_stat/WT2_SS2017/index.html

