Exam preparation sheet - Solutions part 5

0.5 Ito calculus

Solutions: (a) To use martingale arguments and Ito isometry, we have to show that the integrands of the stochastic integrals are in \mathcal{L} (It is known from the lecture that we can assume that $W \in \mathcal{M}_{2}$. Define $f(s, \omega):=s^{2} B_{s}(\omega)$. Then we have $f \in \mathcal{L}$ since

- For all $s \in[0, T], f(s, \cdot) \in \mathcal{F}_{s}$ since $B_{s} \in \mathcal{F}_{s}$.
- For all $\omega \in \Omega, s \mapsto f(s, \omega)$ is continuous ($s \mapsto B_{s}$ is continuous) and thus (together with the first point) f is product-measurable.
- We have

$$
\begin{equation*}
\int_{0}^{T} \mathbb{E}\left[f(s, \cdot)^{2}\right] \mathrm{d} s=\int_{0}^{T} s^{4} \underbrace{\mathbb{E}\left[B_{s}^{2}\right]}_{=s} \mathrm{~d} s=\frac{1}{6} T^{6}<\infty . \tag{*}
\end{equation*}
$$

In the same manner we obtain that $f(s, \omega):=B_{s}(\omega)^{2}$ fulfills $g \in \mathcal{L}$ since

- For all $s \in[0, T], g(s, \cdot) \in \mathcal{F}_{s}$ since $B_{s} \in \mathcal{F}_{s}$.
- For all $\omega \in \Omega, s \mapsto g(s, \omega)$ is continuous ($s \mapsto B_{s}$ is continuous) and thus (together with the first point) g is product-measurable.
- We have by the hint $\mathbb{E}\left[Z^{4}\right]=3$ for $Z \sim N(0,1)$, thus

$$
\int_{0}^{T} \mathbb{E}\left[g(s, \cdot)^{2}\right] \mathrm{d} s=\int_{0}^{T} \underbrace{\mathbb{E}\left[B_{s}^{4}\right]}_{=3 s^{2}} \mathrm{~d} s=T^{3}<\infty
$$

Since $f, g \in \mathcal{L}$, we have that $\left(X_{t}\right)_{t \geq 0}=\left(\int_{0}^{t} f(s, \cdot) \mathrm{d} B_{s}\right)_{t \geq 0}$ and $\left(\int_{0}^{t} g(s, \omega) \mathrm{d} B_{s}\right)_{t \geq 0}$ are martingales w.r.t. \mathcal{F}. We obtain that for all $0 \leq t \leq T$,

$$
\mathbb{E} X_{t}=\mathbb{E} \underbrace{X_{0}}_{=0}=0, \quad \mathbb{E} Y_{t}=e^{\lambda t} \mathbb{E}\left[\int_{0}^{t} g(s, \omega) \mathrm{d} B_{s}\right]=e^{\lambda t} \mathbb{E}[\underbrace{\int_{0}^{0} g(s, \omega) \mathrm{d} B_{s}}_{=0}]=0 .
$$

By the Ito isometry, we obtain that

$$
\mathbb{E}\left[X_{t}^{2}\right]=\mathbb{E}\left[\left(\int_{0}^{t} f(s, \cdot) \mathrm{d} B_{s}\right)^{2}\right]=\int_{0}^{t} \mathbb{E}\left[f(s, \cdot)^{2}\right] \mathrm{d} s \stackrel{(*)}{=} \frac{t^{6}}{6},
$$

and

$$
\mathbb{E}\left[Y_{t}^{2}\right]=e^{2 \lambda t} \mathbb{E}\left[\left(\int_{0}^{t} g(s, \cdot) \mathrm{d} B_{s}\right)^{2}\right]=e^{2 \lambda t} \int_{0}^{t} \mathbb{E}\left[g(s, \cdot)^{2}\right] \mathrm{d} s \stackrel{(* *)}{=} e^{2 \lambda t} t^{3},
$$

and

$$
\mathbb{E}\left[X_{t} Y_{t}\right]=e^{\lambda t} \mathbb{E}\left[\int_{0}^{t} f(s, \cdot) \mathrm{d} B_{s} \cdot \int_{0}^{t} g(s, \cdot) \mathrm{d} B_{s}\right]=e^{\lambda t} \int_{0}^{t} \mathbb{E}[\underbrace{f(s, \cdot) g(s, \cdot)}_{=s^{2} B_{s}^{3}}] \mathrm{d} s \stackrel{\mathbb{E}\left[B_{s}^{3}\right]=0}{=} 0 .
$$

(b) We first show that $f(s, \omega):=e^{\lambda B_{s}(\omega)}$ is in \mathcal{L} :

- For all $s \in[0, T], f(s, \cdot) \in \mathcal{F}_{s}$ since $B_{s} \in \mathcal{F}_{s}$.
- For all $\omega \in \Omega, s \mapsto f(s, \omega)$ is continuous ($s \mapsto B_{s}$ is continuous) and thus (together with the first point) f is product-measurable.
- We have by the hint $\mathbb{E}\left[e^{\sigma Z}\right]=e^{\sigma^{2} / 2}$ for $Z \sim N(0,1)$, thus

$$
\int_{0}^{T} \mathbb{E}\left[f(s, \cdot)^{2}\right] \mathrm{d} s=\int_{0}^{T} \underbrace{\mathbb{E}\left[e^{2 \lambda B_{s}}\right]}_{=e^{2 \lambda^{2} s}} \mathrm{~d} s=\left[\frac{e^{2 \lambda^{2} s}}{2 \lambda^{2}}\right]_{0}^{T}=\frac{1}{2 \lambda^{2}}\left(e^{2 \lambda^{2} T}-1\right)<\infty . \quad(* * *)
$$

Since $f \in \mathcal{L}$, we have that $\left(\int_{0}^{t} f(s, \cdot) \mathrm{d} B_{s}\right)_{t \geq 0}$ is a martingale. We obtain that

$$
\mathbb{E} X_{t}=1+\mathbb{E}\left[\int_{0}^{t} f(s, \cdot) \mathrm{d} B_{s}\right]=1+\mathbb{E}[\underbrace{\int_{0}^{0} f(s, \cdot) \mathrm{d} B_{s}}_{=0}]=1 .
$$

By Ito's isometry, we have

$$
\begin{aligned}
\mathbb{E}\left[X_{t}^{2}\right] \stackrel{\mathbb{E}\left[Y^{2}\right]=\operatorname{Var}(Y)+\mathbb{E}[Y]^{2}}{=} & \mathbb{E}\left[\left(X_{t}-1\right)^{2}\right]+1=1+\mathbb{E}\left[\left(\int_{0}^{t} f(s, \cdot) \mathrm{d} B_{s}\right)^{2}\right]=1+\int_{0}^{t} \mathbb{E}\left[f(s, \cdot)^{2}\right] \mathrm{d} s \\
\stackrel{(* * *)}{=} & 1+\frac{1}{2 \lambda^{2}}\left(e^{2 \lambda^{2} t}-1\right) .
\end{aligned}
$$

(c) We use the property of stochastic integrals $\int_{0}^{t} f(s, \cdot) \mathrm{d} B_{s}$ to be martingales if the integrand $f \in \mathcal{L}$.
(i) Note that $X_{t}=g\left(t, B_{t}\right)$ with $g(t, x):=5+x^{4}-6 t x^{2}+3 t^{2}$. By Ito's formula ($\partial_{t} g(t, x)=$ $-6 x^{2}+6 t, \partial_{x} g(t, x)=4 x^{3}-12 t x, \partial_{x}^{2} g(t, x)=12 x^{2}-12 t$) we obtain (note that $\partial_{t} g+\frac{1}{2} \partial_{x}^{2} g=0$):

$$
\begin{aligned}
\mathrm{d} X_{t} & =\left[\left(\partial_{t} g\right)\left(t, B_{t}\right)+\frac{1}{2} \partial_{x}^{2} g\left(t, B_{t}\right)\right] \mathrm{d} t+\partial_{x} g\left(t, B_{t}\right) \mathrm{d} B_{t} \\
& =\left(4 B_{t}^{3}-12 t B_{t}\right) \mathrm{d} B_{t},
\end{aligned}
$$

or equivalently for $0 \leq t \leq T$ (we have $X_{0}=5$):

$$
X_{t}=5+\int_{0}^{t}\left(4 B_{s}^{3}-12 s B_{s}\right) \mathrm{d} B_{s}
$$

Define $f(s, \omega):=4 B_{s}(\omega)^{3}-12 s B_{s}(\omega)$. We now show that $f \in \mathcal{L}$:

- For all $s \in[0, T], f(s, \cdot) \in \mathcal{F}_{s}$ since $B_{s} \in \mathcal{F}_{s}$.
- For all $\omega \in \Omega, s \mapsto f(s, \omega)$ is continuous ($s \mapsto B_{s}$ is continuous) and thus (together with the first point) f is product-measurable.
- We have $\left(B_{s}^{3}-3 s B_{s}\right)^{2}=B_{s}^{6}-6 s B_{s}^{4}+9 s^{2} B_{s}^{2}$. Since $\mathbb{E}\left[Z^{6}\right]=15$ and $\mathbb{E}\left[Z^{4}\right]=3$ for $Z \sim N(0,1)$, we have

$$
\begin{aligned}
\int_{0}^{T} \mathbb{E}\left[f(s, \cdot)^{2}\right] \mathrm{d} s & =4^{2} \cdot[\int_{0}^{T} \underbrace{\mathbb{E}\left[B_{s}^{6}\right]}_{=15 s^{3}} \mathrm{~d} s-6 \int_{0}^{T} s \underbrace{\mathbb{E}\left[B_{s}^{4}\right]}_{=3 s^{2}} \mathrm{~d} s+9 \int_{0}^{T} s^{2} \underbrace{\mathbb{E}\left[B_{s}^{2}\right]}_{=s} \mathrm{~d} s] \\
& =4^{2} \cdot 6 \cdot \int_{0}^{T} s^{3} \mathrm{~d} s=24 T^{4}<\infty
\end{aligned}
$$

(such an exact calculation is not necessary, one could also bound the integral by some finite term from above!)

We conclude that $\left(\int_{0}^{t} f(s, \cdot) \mathrm{d} B_{s}\right)_{t \in[0, T]}$ is a martingale, thus $\left(X_{t}\right)_{t \in[0, T]}$ is a martingale. (ii) Note that $X_{t}=g\left(t, B_{t}\right)$ with $g(t, x):=e^{\lambda^{2} t / 2} \sin (\lambda x)$. By Ito's formula ($\partial_{t} g(t, x)=\frac{\lambda^{2}}{2} g(t, x)$, $\left.\partial_{x} g(t, x)=\lambda e^{\lambda^{2} t / 2} \cos (\lambda x), \partial_{x}^{2} g(t, x)=-\lambda^{2} g(t, x)\right)$ we obtain (note that $\partial_{t} g+\frac{1}{2} \partial_{x}^{2} g=0$):

$$
\begin{aligned}
\mathrm{d} X_{t} & =\left[\left(\partial_{t} g\right)\left(t, B_{t}\right)+\frac{1}{2} \partial_{x}^{2} g\left(t, B_{t}\right)\right] \mathrm{d} t+\partial_{x} g\left(t, B_{t}\right) \mathrm{d} B_{t} \\
& =\left(\lambda e^{\lambda^{2} t / 2} \cos \left(\lambda B_{t}\right)\right) \mathrm{d} B_{t},
\end{aligned}
$$

or equivalently for $0 \leq t \leq T$ (we have $X_{0}=0$):

$$
X_{t}=\int_{0}^{t}\left(\lambda e^{\lambda^{2} s / 2} \cos \left(\lambda B_{s}\right)\right) \mathrm{d} B_{s}
$$

Define $f(s, \omega):=\lambda e^{\lambda^{2} s / 2} \cos \left(\lambda B_{s}(\omega)\right)$. We now show that $f \in \mathcal{L}$:

- For all $s \in[0, T], f(s, \cdot) \in \mathcal{F}_{s}$ since $B_{s} \in \mathcal{F}_{s}$.
- For all $\omega \in \Omega, s \mapsto f(s, \omega)$ is continuous ($s \mapsto B_{s}$ is continuous) and thus (together with the first point) f is product-measurable.
- We have

$$
\begin{aligned}
\int_{0}^{T} \mathbb{E}\left[f(s, \cdot)^{2}\right] \mathrm{d} s & =\int_{0}^{T} \lambda^{2} e^{\lambda^{2} s} \mathbb{E}\left[\cos \left(\lambda B_{s}\right)^{2}\right] \mathrm{d} s \stackrel{\cos (\cdot) \mid \leq 1}{\leq} \lambda^{2} \int_{0}^{T} e^{\lambda^{2} s} \mathrm{~d} s \\
& =e^{\lambda^{2} T}-1<\infty
\end{aligned}
$$

We conclude that $\left(X_{t}\right)_{t \in[0, T]}=\left(\int_{0}^{t} f(s, \cdot) \mathrm{d} B_{s}\right)_{t \in[0, T]}$ is a martingale.
(iii) Note that $X_{t}=g\left(t, B_{t}\right)$ with $g(t, x):=e^{-\lambda^{2} t / 2} \cosh (\lambda x)$. By Ito's formula $\left(\partial_{t} g(t, x)=\right.$ $-\frac{\lambda^{2}}{2} g(t, x), \partial_{x} g(t, x)=\lambda e^{-\lambda^{2} t / 2} \sinh (\lambda x), \partial_{x}^{2} g(t, x)=\lambda^{2} g(t, x)$) we obtain (note that $\partial_{t} g+$ $\left.\frac{1}{2} \partial_{x}^{2} g=0\right)$:

$$
\begin{aligned}
\mathrm{d} X_{t} & =\left[\left(\partial_{t} g\right)\left(t, B_{t}\right)+\frac{1}{2} \partial_{x}^{2} g\left(t, B_{t}\right)\right] \mathrm{d} t+\partial_{x} g\left(t, B_{t}\right) \mathrm{d} B_{t} \\
& =\left(\lambda e^{-\lambda^{2} t / 2} \sinh \left(\lambda B_{t}\right)\right) \mathrm{d} B_{t}
\end{aligned}
$$

or equivalently for $0 \leq t \leq T$ (we have $X_{0}=1$):

$$
X_{t}=1+\int_{0}^{t}\left(\lambda e^{-\lambda^{2} s / 2} \sinh \left(\lambda B_{s}\right)\right) \mathrm{d} B_{s}
$$

Define $f(s, \omega):=\lambda e^{-\lambda^{2} s / 2} \sinh \left(\lambda B_{s}(\omega)\right)$. We now show that $f \in \mathcal{L}$:

- For all $s \in[0, T], f(s, \cdot) \in \mathcal{F}_{s}$ since $B_{s} \in \mathcal{F}_{s}$.
- For all $\omega \in \Omega, s \mapsto f(s, \omega)$ is continuous ($s \mapsto B_{s}$ is continuous) and thus (together with the first point) f is product-measurable.
- We have (note that $\sinh (x)^{2}=\frac{e^{2 x}+e^{-2 x}}{4}-\frac{1}{2} \leq \frac{e^{2 x}+e^{-2 x}}{4}$ and $\mathbb{E}\left[e^{\sigma Z}\right]=e^{\sigma^{2} / 2}$ for $Z \sim N(0,1)$)

$$
\begin{aligned}
\int_{0}^{T} \mathbb{E}\left[f(s, \cdot)^{2}\right] \mathrm{d} s & =\lambda^{2} \int_{0}^{T} e^{-\lambda^{2} s} \mathbb{E}[\underbrace{\sinh \left(\lambda B_{s}\right)^{2}}_{\leq \frac{1}{4}\left(e^{2 \lambda B_{s}}+e^{-2 \lambda B_{s}}\right)}] \mathrm{d} s \leq \frac{\lambda^{2}}{4} \int_{0}^{T} e^{-\lambda^{2} s} \cdot 2 e^{2 \lambda^{2} s} \mathrm{~d} s \\
& =\frac{\lambda^{2}}{2} \int_{0}^{T} e^{\lambda^{2} s} \mathrm{~d} s=\frac{1}{2}\left[e^{\lambda^{2} T}-1\right]<\infty
\end{aligned}
$$

We conclude that $\left(\int_{0}^{t} f(s, \cdot) \mathrm{d} B_{s}\right)_{t \in[0, T]}$ is a martingale. Thus $\left(X_{t}\right)_{t \in[0, T]}=\left(1+\int_{0}^{t} f(s, \cdot) \mathrm{d} B_{s}\right)_{t \in[0, T]}$ is a martingale.
(iv) Define $Y_{t}=g\left(t, B_{t}\right)$ with $g(t, x):=t^{2} x^{3}$. By Ito's formula $\left(\partial_{t} g(t, x)=2 t x^{3}, \partial_{x} g(t, x)=\right.$ $\left.3 t^{2} x^{2}, \partial_{x}^{2} g(t, x)=6 t^{2} x\right)$ we obtain:

$$
\begin{aligned}
\mathrm{d} Y_{t} & =\left[\left(\partial_{t} g\right)\left(t, B_{t}\right)+\frac{1}{2} \partial_{x}^{2} g\left(t, B_{t}\right)\right] \mathrm{d} t+\partial_{x} g\left(t, B_{t}\right) \mathrm{d} B_{t} \\
& =\left(2 t B_{t}^{3}+3 t^{2} B_{t}\right) \mathrm{d} t+\left(3 t^{2} B_{t}^{2}\right) \mathrm{d} B_{t},
\end{aligned}
$$

or equivalently for $0 \leq t \leq T$ (we have $Y_{0}=0$):

$$
Y_{t}=\int_{0}^{t} s B_{s}\left(2 B_{s}^{2}+3 s\right) \mathrm{d} s+\int_{0}^{t}\left(3 s^{2} B_{s}^{2}\right) \mathrm{d} B_{s}
$$

i.e. $X_{t}=Y_{t}-\int_{0}^{t} s B_{s}\left(B_{s}^{2}+3 s\right) \mathrm{d} s=\int_{0}^{t}\left(3 s^{2} B_{s}^{2}\right) \mathrm{d} B_{s}$.

Define $f(s, \omega):=3 s^{2} B_{s}(\omega)^{2}$. We now show that $f \in \mathcal{L}$:

- For all $s \in[0, T], f(s, \cdot) \in \mathcal{F}_{s}$ since $B_{s} \in \mathcal{F}_{s}$.
- For all $\omega \in \Omega, s \mapsto f(s, \omega)$ is continuous ($s \mapsto B_{s}$ is continuous) and thus (together with the first point) f is product-measurable.
- We have (note that $\mathbb{E}\left[Z^{4}\right]=3$ for $Z \sim N(0,1)$):

$$
\int_{0}^{T} \mathbb{E}\left[f(s, \cdot)^{2}\right] \mathrm{d} s=9 \int_{0}^{T} s^{4} \underbrace{\mathbb{E}\left[B_{s}^{4}\right]}_{=3 s^{2}} \mathrm{~d} s=27 \int_{0}^{T} s^{6} \mathrm{~d} s=\frac{27}{7} T^{7}<\infty
$$

We conclude that $\left(X_{t}\right)_{t \in[0, T]}=\left(\int_{0}^{t} f(s, \cdot) \mathrm{d} B_{s}\right)_{t \in[0, T]}$ is a martingale.
(d) (i) Let $T:=t$. We search for g such that $\partial_{x} g(t, x)=e^{-x}$. This is fulfilled for $g(t, x)=-e^{-x}$. Put $Y_{t}:=g\left(t, B_{t}\right)=-e^{-B_{t}}$. By Ito's formula, we have

$$
\begin{aligned}
\mathrm{d} Y_{t} & =\left[\left(\partial_{t} g\right)\left(t, B_{t}\right)+\frac{1}{2} \partial_{x}^{2} g\left(t, B_{t}\right)\right] \mathrm{d} t+\partial_{x} g\left(t, B_{t}\right) \mathrm{d} B_{t} \\
& =-\frac{1}{2} e^{-B_{t}} \mathrm{~d} t+e^{-B_{t}} \mathrm{~d} B_{t}
\end{aligned}
$$

or equivalently (since $Y_{0}=-1$),

$$
-e^{-B_{t}}=-1-\frac{1}{2} \int_{0}^{t} e^{-B_{s}} \mathrm{~d} s+\int_{0}^{t} e^{-B_{s}} \mathrm{~d} B_{s} \Leftrightarrow \int_{0}^{t} e^{-B_{s}} \mathrm{~d} B_{s}=1+\frac{1}{2} \int_{0}^{t} e^{-B_{s}} \mathrm{~d} s-e^{-B_{t}} .
$$

We obtain that

$$
e^{B_{t}} \int_{0}^{t} e^{-B_{s}} \mathrm{~d} B_{s}=e^{B_{t}}+\frac{1}{2} \int_{0}^{t} e^{B_{t}-B_{s}} \mathrm{~d} s-1
$$

Since $\mathbb{E}\left[e^{Z}\right]=e^{\sigma^{2} / 2}$ for $Z \sim N\left(0, \sigma^{2}\right)$, we have with Fubini's theorem (the integrand is positive)

$$
\begin{aligned}
\mathbb{E}\left[e^{B_{t}} \int_{0}^{t} e^{-B_{s}} \mathrm{~d} B_{s}\right] & =\mathbb{E}\left[e^{B_{t}}\right]+\frac{1}{2} \int_{0}^{t} \mathbb{E}\left[e^{B_{t}-B_{s}}\right] \mathrm{d} s-1 \\
& =e^{t / 2}+\frac{1}{2} \underbrace{\int_{0}^{t} e^{(t-s) / 2} \mathrm{~d} s}_{=\left[-2 e^{(t-s) / 2}\right]_{0}^{t}=2\left(e^{t / 2}-1\right)}-1 \\
& =e^{t / 2}+\left(e^{t / 2}-1\right)-1 \\
& =2\left(e^{t / 2}-1\right) .
\end{aligned}
$$

(ii) Let $T:=t$. We have $B_{t}=\int_{0}^{t} 1 \mathrm{~d} B_{s}$ (obviously $1 \in \mathcal{L}$), and $f(s, \omega):=B_{s}(\omega)^{2}$ fulfills $f \in \mathcal{L}$ since

- For all $s \in[0, T], f(s, \cdot) \in \mathcal{F}_{s}$ since $B_{s} \in \mathcal{F}_{s}$.
- For all $\omega \in \Omega, s \mapsto f(s, \omega)$ is continuous ($s \mapsto B_{s}$ is continuous) and thus (together with the first point) f is product-measurable.
- We have (since $\mathbb{E}\left[Z^{4}\right]=3$ for $Z \sim N(0,1)$):

$$
\int_{0}^{T} \mathbb{E}\left[f(s, \cdot)^{2}\right] \mathrm{d} s=\int_{0}^{T} \underbrace{\mathbb{E}\left[B_{s}^{4}\right]}_{=3 s^{2}} \mathrm{~d} s=T^{3}<\infty
$$

By Ito's isometry, we have
$\mathbb{E}\left[B_{t} \cdot \int_{0}^{t} B_{s}^{2} \mathrm{~d} B_{s}\right]=\mathbb{E}\left[\int_{0}^{t} 1 \mathrm{~d} B_{s} \cdot \int_{0}^{t} f(s, \cdot) \mathrm{d} B_{s}\right]=\int_{0}^{t} \mathbb{E}[1 \cdot f(s, \cdot)] \mathrm{d} s=\int_{0}^{t} \underbrace{\mathbb{E}\left[B_{s}^{2}\right]}_{=s} \mathrm{~d} s=\frac{1}{2} t^{2}$.
(e) Define $g(t, x):=f(t) x$ and $Y_{t}:=g\left(t, B_{t}\right)=f(t) B_{t}$. Obviously, g is twice differentiable. By Ito's formula we obtain for $t \in[0, T]$ a.s.:

$$
\begin{aligned}
\mathrm{d} Y_{t} & =\left[\left(\partial_{t} g\right)\left(t, B_{t}\right)+\frac{1}{2} \partial_{x}^{2} g\left(t, B_{t}\right)\right] \mathrm{d} t+\partial_{x} g\left(t, B_{t}\right) \mathrm{d} B_{t} \\
& =f^{\prime}(t) B_{t} \mathrm{~d} t+f(t) \mathrm{d} B_{t}
\end{aligned}
$$

Since $Y_{0}=f(0) B_{0}=0$, this is equivalent to: For all $t \in[0, T]$ it holds a.s. that

$$
f(t) B_{t}=Y_{t}=\int_{0}^{t} f^{\prime}(s) B_{s} \mathrm{~d} s+\int_{0}^{t} f(s) \mathrm{d} B_{s} \Leftrightarrow f(t) B_{t}-\int_{0}^{t} B_{s} f^{\prime}(s) \mathrm{d} s=\int_{0}^{t} f(s) \mathrm{d} B_{s}
$$

