Exam preparation sheet - Solutions part 3

0.4 Weak convergence in $C[0,1]$

Solutions: For (a) - (e) we use the convergence principle from the lecture. This means for $X_{n} \xrightarrow{D} X$ in $\left(C[0,1],\|\cdot\|_{\infty}\right)$ we have to show that
(C1) There exist $\gamma, \kappa>0, K \in \mathbb{R}$ and $n_{0} \in \mathbb{N}$ such that

$$
\forall s, t \in[0,1], n \geq n_{0}, \varepsilon>0: \quad \mathbb{P}\left(\left|X_{n}(s)-X_{n}(t)\right| \geq \varepsilon\right) \leq \frac{K|s-t|^{1+\gamma}}{\varepsilon^{\kappa}}
$$

(C2) The finite-dimensional distributions converge, i.e. for all $k \in \mathbb{N}$, for all $0 \leq t_{1}<\ldots<t_{k} \leq$ $1,\left(X_{n}\left(t_{1}\right), \ldots, X_{n}\left(t_{k}\right)\right) \xrightarrow{D}\left(X\left(t_{1}\right), \ldots, X\left(t_{k}\right)\right)$.
(a) Since $X^{(n)}$ is a Gaussian process, we have that $X^{(n)}(s)-X^{(n)}(t) \sim N\left(a_{n}, \tau_{n}^{2}\right)$ with

$$
\begin{aligned}
a_{n} & =\mathbb{E}\left[X^{(n)}(s)-X^{(n)}(t)\right]=\mu_{n}(t)-\mu_{n}(s)=\frac{1}{n}(\sin (t)-\sin (s)) \\
\tau_{n}^{2} & =\operatorname{Var}\left(X^{(n)}(s)-X^{(n)}(t)\right)=\operatorname{Var}\left(X^{(n)}(s)\right)+\operatorname{Var}\left(X^{(n)}(t)\right)-2 \operatorname{Cov}\left(X^{(n)}(s), X^{(n)}(t)\right) \\
& =\left[s-\frac{1}{2 \sqrt{n}}\right]+\left[t-\frac{1}{2 \sqrt{n}}\right]-\left[s+t-\sqrt{(s-t)^{2}+\frac{1}{n}}\right] \\
& =\sqrt{(s-t)^{2}+\frac{1}{n}}-\frac{1}{\sqrt{n}} \stackrel{\sqrt{x}-\sqrt{y}=\frac{x-y}{\sqrt{x}+\sqrt{y}}}{=} \frac{(s-t)^{2}}{\sqrt{(s-t)^{2}+\frac{1}{n}}+\frac{1}{\sqrt{n}}} \leq \frac{(s-t)^{2}}{\sqrt{(s-t)^{2}}}=|s-t|
\end{aligned}
$$

With the hint and $|\sin (s)-\sin (t)| \leq|s-t|$ we conclude that

$$
\mathbb{E}\left[\left|X^{(n)}(s)-X^{(n)}(t)\right|^{4}\right]=a_{n}^{4}+6 a_{n}^{2} \tau_{n}^{2}+3 \tau_{n}^{4} \leq \frac{1}{n^{4}}|s-t|^{4}+\frac{6}{n^{2}}|s-t|^{2} \cdot|s-t|+3|s-t|^{2}
$$

Since $|s-t| \leq 1$ and $n \geq 1$, we obtain that $\mathbb{E}\left[\left|X^{(n)}(s)-X^{(n)}(t)\right|^{4}\right] \leq 10|s-t|^{2}$. We conclude with Markov's inequality that

$$
\mathbb{P}\left(\left|X^{(n)}(s)-X^{(n)}(t)\right| \geq \varepsilon\right) \leq \frac{\mathbb{E}\left[\left|X^{(n)}(s)-X^{(n)}(t)\right|^{4}\right]}{\varepsilon^{4}} \leq \frac{10|s-t|^{2}}{\varepsilon^{4}}
$$

i.e. (C1) is satisfied.

Now let $k \in \mathbb{N}, 0 \leq t_{1}<\ldots<t_{k} \leq 1$. Since $X^{(n)}$ is a Gaussian process, $\left(X^{(n)}\left(t_{1}\right), \ldots, X^{(n)}\left(t_{k}\right)\right) \sim$ $N\left(m_{n}, \Sigma_{n}\right)$ with $m_{n} \in \mathbb{R}^{k}, \Sigma_{n} \in \mathbb{R}^{k \times k}$. Here,

$$
\begin{aligned}
m_{n} & =\left(\begin{array}{c}
\mu_{n}\left(t_{1}\right) \\
\vdots \\
\mu_{n}\left(t_{k}\right)
\end{array}\right)=\frac{1}{n}\left(\begin{array}{c}
\sin \left(t_{1}\right) \\
\vdots \\
\sin \left(t_{k}\right)
\end{array}\right) \rightarrow 0, \\
\Sigma_{n, i j} & =\operatorname{Cov}\left(X^{(n)}\left(t_{i}\right), X^{(n)}\left(t_{j}\right)\right)=\frac{1}{2}\left(t_{i}+t_{j}-\sqrt{\left(t_{i}-t_{j}\right)^{2}+\frac{1}{n}}\right) \rightarrow \frac{1}{2}\left(t_{i}+t_{j}-\left|t_{i}-t_{j}\right|\right)=\min \left\{t_{i}, t_{j}\right\} .
\end{aligned}
$$

Since normal distributions converge if the parameters converge, we have shown that

$$
\left(X^{(n)}\left(t_{1}\right), \ldots, X^{(n)}\left(t_{k}\right)\right) \xrightarrow{D} N(m, \Sigma)
$$

with $m=0$ and $\Sigma_{i j}=\min \left\{t_{i}, t_{j}\right\}$ which is exactly the distribution of $\left(B_{t_{1}}, \ldots, B_{t_{k}}\right)$, where B is a Brownian motion. Thus we have shown that

$$
\left(X^{(n)}\left(t_{1}\right), \ldots, X^{(n)}\left(t_{k}\right)\right) \xrightarrow{D}\left(B_{t_{1}}, \ldots, B_{t_{k}}\right) .
$$

This shows $(\mathrm{C} 2)$ and we conclude that $X^{(n)} \xrightarrow{D} B$ in $\left(C[0,1],\|\cdot\|_{\infty}\right)$.
(b) (i) Note that $\mathbb{E} \varepsilon_{i}=0$ and thus $\mathbb{E} X_{n}(a)=0$. We conclude that

$$
\begin{aligned}
\mathbb{E}\left[\left|X_{n}(a)-X_{n}\left(a^{\prime}\right)\right|^{2}\right] & =\operatorname{Var}\left(X_{n}(a)-X_{n}\left(a^{\prime}\right)\right)^{k=0} \stackrel{\text { vanishes }}{=} \operatorname{Var}\left(\sum_{k=1}^{n}\left(a^{k}-\left(a^{\prime}\right)^{k}\right) \varepsilon_{n-k}\right) \\
& \stackrel{\varepsilon_{i} \text { iid }}{=} \sum_{k=1}^{n} \operatorname{Var}\left(\left(a^{k}-\left(a^{\prime}\right)^{k}\right) \varepsilon_{n-k}\right)=\sigma^{2} \sum_{k=1}^{n}\left(a^{k}-\left(a^{\prime}\right)^{k}\right)^{2} .
\end{aligned}
$$

By Taylor's formula applied to $f(x)=x^{k}$, we have $f(x)-f\left(x^{\prime}\right)=\left(x-x^{\prime}\right) f^{\prime}(\tilde{x})$ with some \tilde{x} between x, x^{\prime}. In the above setting, we obtain for $\left(a^{k}-\left(a^{\prime}\right)^{k}\right)^{2}=\left(\left(a-a^{\prime}\right) k \tilde{a}^{k-1}\right)^{2} \leq(a-$ $\left.a^{\prime}\right)^{2} k^{2}(1-\delta)^{2(k-1)}$ since \tilde{a} is between a, a^{\prime} which are both in A. Thus by using $\sum_{k=1}^{n} \leq \sum_{k=1}^{\infty}$,

$$
\mathbb{E}\left[\left|X_{n}(a)-X_{n}\left(a^{\prime}\right)\right|^{2}\right] \leq\left(a-a^{\prime}\right)^{2} \underbrace{\sigma^{2} \sum_{k=1}^{\infty} k^{2}(1-\delta)^{2(k-1)}}_{=: C},
$$

where the sum converges (and is $<\infty$) for instance by quotient criterium.
(ii) By (i), we have for all $\varepsilon>0$ that for all $a, a^{\prime} \in A$:

$$
\mathbb{P}\left(\left|X_{n}(a)-X_{n}\left(a^{\prime}\right)\right| \geq \varepsilon\right) \leq \frac{\mathbb{E}\left[\left|X_{n}(a)-X_{n}\left(a^{\prime}\right)\right|^{2}\right]}{\varepsilon^{2}} \leq \frac{C}{\varepsilon^{2}}\left|a-a^{\prime}\right|^{2},
$$

i.e. (C1) is fulfilled with $\gamma=1$.

For $l \in \mathbb{N},-1+\delta \leq a_{1}<\ldots<a_{l} \leq 1-\delta$, we have

$$
\left(\begin{array}{c}
X_{n}\left(a_{1}\right) \\
\vdots \\
X_{n}\left(a_{l}\right)
\end{array}\right)=\sum_{k=0}^{n} \varepsilon_{n-k} \cdot\left(\begin{array}{c}
a_{1}^{k} \\
\vdots \\
a_{l}^{k}
\end{array}\right)=\underbrace{\left(\begin{array}{cccc}
1 & a_{1} & \ldots & a_{1}^{n} \\
1 & a_{2} & \ldots & a_{2}^{n} \\
\vdots & \vdots & & \vdots \\
1 & a_{l} & \ldots & a_{l}^{n}
\end{array}\right)}_{=: B} \cdot \underbrace{\left(\begin{array}{c}
\varepsilon_{n} \\
\vdots \\
\varepsilon_{0}
\end{array}\right)}_{\sim N\left(0, \sigma^{2} I_{l \times l}\right)} \sim N(0, \underbrace{\sigma^{2} B B^{\prime}}_{=: \Sigma^{(n)}})
$$

(B is the Vandermonde matrix and thus has full rank since the a_{i} are all different). We have

$$
\begin{aligned}
\Sigma_{i j}^{(n)} & =\operatorname{Cov}\left(X_{n}\left(a_{i}\right), X_{n}\left(a_{j}\right)\right)=\operatorname{Cov}\left(\sum_{k=0}^{n} a_{i}^{k} \varepsilon_{n-k}, \sum_{k=0}^{n} a_{j}^{k} \varepsilon_{n-k}\right) \stackrel{\varepsilon_{i} \text { iid }}{=} \sigma^{2} \sum_{k=0}^{n}\left(a_{i} a_{j}\right)^{k} \\
& =\frac{1-\left(a_{i} a_{j}\right)^{n+1}}{1-a_{i} a_{j}} \rightarrow \frac{\sigma^{2}}{1-a_{i} a_{j}} .
\end{aligned}
$$

This shows that $\Sigma^{(n)}$ converges to Σ with $\Sigma_{i j}=\frac{\sigma^{2}}{1-a_{i} a_{j}}$. Since Gaussian distributions converge if the parameters converge, we obtain that $\left(X_{n}\left(a_{1}\right), \ldots, X_{n}\left(a_{l}\right)\right) \xrightarrow{D} N(0, \Sigma)$. Since Z is a centered Gaussian process with covariance function $\operatorname{Cov}\left(Z_{a}, Z_{a^{\prime}}\right)=\frac{\sigma^{2}}{1-a a^{\prime}}$, we have that $\left(Z_{a_{1}}, \ldots, Z_{a_{l}}\right) \sim$ $N(0, \Sigma)$ with the same Σ as before. Thus we have shown that

$$
\left(X_{n}\left(a_{1}\right), \ldots, X_{n}\left(a_{l}\right)\right) \xrightarrow{D}\left(Z_{a_{1}}, \ldots, Z_{a_{l}}\right),
$$

i.e. (C2). By the convergence principle (applied to $C(A)$ as the hint suggests), we have $X_{n} \xrightarrow{D} Z$ in $\left(C(A),\|\cdot\|_{\infty}\right)$.
(iii) By the hint, we define $\Phi:\left(C(A) \times A,\|\cdot\|_{\infty} \times|\cdot|\right) \rightarrow(\mathbb{R},|\cdot|), \Phi(f, x):=f(x) . \Phi$ is continuous,
since for $\left\|f_{n}-f\right\|_{\infty} \rightarrow 0$ and $\left|x_{n}-x\right| \rightarrow 0$, we have $\left|\Phi\left(f_{n}, x_{n}\right)-\Phi(f, x)\right|=\left|f_{n}\left(x_{n}\right)-f(x)\right| \leq$ $\left|f_{n}\left(x_{n}\right)-f\left(x_{n}\right)\right|+\left|f\left(x_{n}\right)-f(x)\right| \leq\left\|f_{n}-f\right\|_{\infty}+\left|f\left(x_{n}\right)-f(x)\right| \rightarrow 0$ since f is continuous and $x_{n} \rightarrow x$.
Since $T_{n} \xrightarrow{\mathbb{P}} \tau$ and τ is a deterministic constant, we have by a theorem from the lecture and (ii) that $\left(X_{n}, T_{n}\right) \xrightarrow{D}(Z, \tau)$ in $\left(C(A) \times A,\|\cdot\|_{\infty} \times|\cdot|\right)$.
By the continuous mapping theorem, we obtain that $X_{n}\left(T_{n}\right)=\Phi\left(X_{n}, T_{n}\right) \xrightarrow{D} \Phi(Z, \tau)=Z_{\tau} \sim$ $N\left(0, \frac{\sigma^{2}}{1-\tau^{2}}\right)\left(Z\right.$ is a centered Gaussian process, so Z_{τ} is normal distributed with mean 0 and variance $\left.\operatorname{Var}\left(Z_{\tau}\right)=\operatorname{Cov}\left(Z_{\tau}, Z_{\tau}\right)=\frac{\sigma^{2}}{1-\tau^{2}}\right)$.
(c) (i) Note that $\mathbb{E} \hat{E}_{n}(M)=\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[X_{i} h_{M}\left(X_{i}\right)\right]=\mathbb{E}\left[X_{1} h_{M}\left(X_{1}\right)\right]=E(M)$ since X_{i} are iid, thus $\mathbb{E} \hat{P}_{n}(M)=0$. We conclude (note that $\operatorname{Var}(Z)=\operatorname{Var}(Z+c)$ for constants c) that

$$
\begin{array}{cl}
& \mathbb{E}\left[\left|\hat{P}_{n}(M)-\hat{P}_{n}\left(M^{\prime}\right)\right|^{2}\right] \\
= & \operatorname{Var}\left(\hat{P}_{n}(M)-\hat{P}_{n}\left(M^{\prime}\right)\right)=\operatorname{Var}\left(\frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left(X_{i} h_{M}\left(X_{i}\right)-X_{i} h_{M^{\prime}}\left(X_{i}\right)\right)\right) \\
\stackrel{X_{i \text { iid }}}{=} & \frac{1}{n} \sum_{i=1}^{n} \operatorname{Var}\left(X_{i} h_{M}\left(X_{i}\right)-X_{i} h_{M^{\prime}}\left(X_{i}\right)\right)=\operatorname{Var}\left(X_{1} h_{M}\left(X_{1}\right)-X_{1} h_{M^{\prime}}\left(X_{1}\right)\right) \\
\operatorname{Var}(Z)=\mathbb{E}\left[Z^{2}\right]-\mathbb{E}[Z]^{2} \\
\leq & \mathbb{E}\left[X_{1}^{2}\left|h_{M}\left(X_{1}\right)-h_{M^{\prime}}\left(X_{1}\right)\right|^{2}\right] .
\end{array}
$$

It is easy to see that $h_{M}(x)-h_{M^{\prime}}(x) \leq \frac{1}{L} \cdot\left|M-M^{\prime}\right|$ independent of x. Proof: w.l.o.g. assume that $M<M^{\prime}$. It holds that

$$
h_{M}(x)= \begin{cases}1, & x \in[-M, M], \\ 0, & x \in[-(M+L),(M+L)], \\ \frac{1}{L}(x+(M+L)), & x \in[-(M+L), M], \\ \frac{1}{L}((M+L)-x), & x \in[M, M+L] .\end{cases}
$$

w.l.o.g. assume that $x \in[M, M+L]$ (the other cases are easier). If $x \in\left[M^{\prime}, M^{\prime}+L\right]$, then $\left|h_{M}(x)-h_{M^{\prime}}(x)\right|=\frac{1}{L}\left|(M+L-x)-\left(M^{\prime}+L-x\right)\right|=\frac{1}{L}\left|M-M^{\prime}\right|$. If $x \in\left[M, M^{\prime}\right]$, then $\left|h_{M}(x)-h_{M^{\prime}}(x)\right|=\left|\frac{1}{L}(M+L-x)-1\right|=\frac{1}{L}|M-x| \leq \frac{1}{L}\left|M-M^{\prime}\right|$.

Thus we have

$$
\mathbb{E}\left[\left|\hat{P}_{n}(M)-\hat{P}_{n}\left(M^{\prime}\right)\right|^{2}\right] \leq \frac{\mathbb{E}\left[X_{1}^{2}\right]}{L^{2}}\left|M-M^{\prime}\right|^{2}
$$

(ii) By (i), we have for all $\varepsilon>0$ that for all $M, M^{\prime} \in[0,1]$:

$$
\mathbb{P}\left(\left|\hat{P}_{n}(M)-\hat{P}_{n}\left(M^{\prime}\right)\right| \geq \varepsilon\right) \leq \frac{\mathbb{E}\left[\left|\hat{P}_{n}(M)-\hat{P}_{n}\left(M^{\prime}\right)\right|^{2}\right]}{\varepsilon^{2}} \leq \frac{\mathbb{E}\left[X_{1}^{2}\right]}{L^{2} \varepsilon^{2}}\left|M-M^{\prime}\right|^{2}
$$

i.e. (C1) is fulfilled with $\gamma=1$.

Now let $k \in \mathbb{N}, 0 \leq M_{1}<\ldots<M_{k} \leq 1$. By the multivariate central limit theorem, we have

$$
\left(\begin{array}{c}
\hat{P}_{n}\left(M_{1}\right) \\
\vdots \\
\hat{P}_{n}\left(M_{k}\right)
\end{array}\right)=\frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left(\begin{array}{c}
X_{i} h_{M_{1}}\left(X_{i}\right)-\mathbb{E}\left[X_{i} h_{M_{1}}\left(X_{i}\right)\right] \\
\vdots \\
X_{i} h_{M_{k}}\left(X_{i}\right)-\mathbb{E}\left[X_{i} h_{M_{k}}\left(X_{i}\right)\right]
\end{array}\right) \xrightarrow{D} N(0, \Sigma)
$$

where $\Sigma_{i j}=\operatorname{Cov}\left(X_{1} h_{M_{i}}\left(X_{1}\right), X_{1} h_{M_{j}}\left(X_{1}\right)\right)$. So if we ask Z to have the covariance function $\gamma\left(M, M^{\prime}\right)=\mathbb{E}\left[Z_{M} Z_{M^{\prime}}\right]=\operatorname{Cov}\left(X_{1} h_{M}\left(X_{1}\right), X_{1} h_{M^{\prime}}\left(X_{1}\right)\right)$, then $\left(Z_{M_{1}}, \ldots, Z_{M_{k}}\right) \sim N(0, \Sigma)$ (multivariate normal with mean 0 since Z is a centered Gaussian process). Thus with this choice of
$\gamma\left(M, M^{\prime}\right)$ we have shown that

$$
\left(\hat{P}_{n}\left(M_{1}\right), \ldots, \hat{P}_{n}\left(M_{k}\right)\right) \xrightarrow{D}\left(Z_{M_{1}}, \ldots, Z_{M_{k}}\right),
$$

i.e. (C2) holds. By the convergence principle, we have that $\hat{P}_{n} \xrightarrow{D} Z$ in $\left(C[0,1],\|\cdot\|_{\infty}\right)$.
(d) (i) Note that $\mathbb{E} \hat{E}_{n}(t)=\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[\sin \left(X_{i} t\right)\right]=\mathbb{E}\left[\sin \left(X_{1} t\right)\right]=E(t)$ since X_{i} are iid, thus $\mathbb{E} \hat{P}_{n}(t)=0$. We conclude (note that $\operatorname{Var}(Z)=\operatorname{Var}(Z+c)$ for constants c) that
$\mathbb{E}\left[\left|\hat{P}_{n}(t)-\hat{P}_{n}(s)\right|^{2}\right] \quad=\quad \operatorname{Var}\left(\hat{P}_{n}(t)-\hat{P}_{n}(s)\right)=\operatorname{Var}\left(\frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left(\sin \left(X_{i} t\right)-\sin \left(X_{i} s\right)\right)\right)$

$$
\stackrel{X_{i} \mathrm{iid}}{=} \quad \frac{1}{n} \sum_{i=1}^{n} \operatorname{Var}\left(\sin \left(X_{i} t\right)-\sin \left(X_{i} s\right)\right)=\operatorname{Var}\left(\sin \left(X_{1} t\right)-\sin \left(X_{1} s\right)\right)
$$

$$
\stackrel{\operatorname{Var}(Z)=\mathbb{E}\left[Z^{2}\right]-\mathbb{E}[Z]^{2}}{\leq} \mathbb{E}\left[\left|\sin \left(X_{1} t\right)-\sin \left(X_{1} s\right)\right|^{2}\right] \leq \mathbb{E}\left[X_{1}^{2}\right] \cdot|s-t|^{2}
$$

where we used $|\sin (x)-\sin (y)| \leq|x-y|$.
(ii) By (i), we have for all $\varepsilon>0$ that for all $s, t \in[0,1]$:

$$
\mathbb{P}\left(\left|\hat{P}_{n}(s)-\hat{P}_{n}(t)\right| \geq \varepsilon\right) \leq \frac{\mathbb{E}\left[\left|\hat{P}_{n}(s)-\hat{P}_{n}(t)\right|^{2}\right]}{\varepsilon^{2}} \leq \frac{\mathbb{E}\left[X_{1}^{2}\right]}{\varepsilon^{2}}|s-t|^{2}
$$

i.e. (C1) is fulfilled with $\gamma=1$.

Now let $k \in \mathbb{N}, 0 \leq t_{1}<\ldots<t_{k} \leq 1$. By the multivariate central limit theorem, we have

$$
\left(\begin{array}{c}
\hat{P}_{n}\left(t_{1}\right) \\
\vdots \\
\hat{P}_{n}\left(t_{k}\right)
\end{array}\right)=\frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left(\begin{array}{c}
\sin \left(X_{i} t_{1}\right)-\mathbb{E}\left[\sin \left(X_{i} t_{1}\right)\right] \\
\vdots \\
\sin \left(X_{i} t_{k}\right)-\mathbb{E}\left[\sin \left(X_{i} t_{k}\right)\right]
\end{array}\right) \xrightarrow{D} N(0, \Sigma),
$$

where $\Sigma_{i j}=\operatorname{Cov}\left(\sin \left(X_{1} t_{1}\right), \sin \left(X_{1} t_{k}\right)\right)$. So if we ask Z to have the covariance function $\gamma(s, t)=$ $\mathbb{E}\left[Z_{s} Z_{t}\right]=\operatorname{Cov}\left(\sin \left(X_{1} s\right), \sin \left(X_{1} t\right)\right)$, then $\left(Z_{t_{1}}, \ldots, Z_{t_{k}}\right) \sim N(0, \Sigma)$ (multivariate normal with mean 0 since Z is a centered Gaussian process). Thus with this choice of $\gamma(s, t)$ we have shown that

$$
\left(\hat{P}_{n}\left(t_{1}\right), \ldots, \hat{P}_{n}\left(t_{k}\right)\right) \xrightarrow{D}\left(Z_{t_{1}}, \ldots, Z_{t_{k}}\right)
$$

i.e. (C2) holds. By the convergence principle, we have that $\hat{P}_{n} \xrightarrow{D} Z$ in $\left(C[0,1],\|\cdot\|_{\infty}\right)$.
(iii) By the hint, $\Phi:\left(C[0,1],\|\cdot\|_{\infty}\right) \rightarrow(\mathbb{R},|\cdot|), \Phi(f):=\sup _{t \in[0,1]}|f(t)|$ is continuous. By the continuous mapping theorem applied to (ii) we obtain that

$$
\sqrt{n} \sup _{t \in[0,1]}\left|\hat{E}_{n}(t)-E(t)\right|=\sup _{t \in[0,1]}\left|\hat{P}_{n}(t)\right|=\Phi\left(\hat{P}_{n}\right) \xrightarrow{D} \Phi(Z)=\sup _{t \in[0,1]}\left|Z_{t}\right| .
$$

For each $\omega \in \Omega$, the right hand side $\sup _{t \in[0,1]}\left|Z_{t}(\omega)\right|$ is finite since $t \mapsto Z_{t}(\omega)$ is continuous. By Slutzky's theorem, we obtain

$$
\sup _{t \in[0,1]}\left|\hat{E}_{n}(t)-E(t)\right|=\frac{1}{\sqrt{n}} \cdot \sqrt{n} \sup _{t \in[0,1]}\left|\hat{E}_{n}(t)-E(t)\right| \xrightarrow{D} 0 \cdot \sup _{t \in[0,1]}\left|Z_{t}\right|=0,
$$

i.e. $\sup _{t \in[0,1]}\left|\hat{E}_{n}(t)-E(t)\right| \xrightarrow{\mathbb{P}} 0$ (the limit is constant). We obtain that

$$
\left|\sup _{t \in[0,1]} \hat{E}_{n}(t)-\sup _{t \in[0,1]} E(t)\right| \leq \sup _{t \in[0,1]}\left|\hat{E}_{n}(t)-E(t)\right| \xrightarrow{\mathbb{P}} 0,
$$

which implies that $\sup _{t \in[0,1]} \hat{E}_{n}(t) \xrightarrow{\mathbb{P}} \sup _{t \in[0,1]} E(t)$. Since $X_{1} \sim U[0,1]$, we have $E(t)=$ $\mathbb{E}\left[\sin \left(X_{1} t\right)\right]=\int_{0}^{1} \sin (x t) \mathrm{d} x=\frac{1-\cos (t)}{t}$ which is maximized on $[0,1]$ in $t=1$ (by the hint that $E(t)$ is nondecreasing in $[0,1]$, i.e. $\sup _{t \in[0,1]} E(t)=1-\cos (1)$. This shows that

$$
\sup _{t \in[0,1]} \hat{E}_{n}(t) \xrightarrow{\mathbb{P}} 1-\cos (1)
$$

(e) (i) Note that $\mathbb{E} \hat{E}_{n}(t)=\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[X_{1}^{1+t}\right]=\mathbb{E}\left[X_{1}^{1+t}\right]=E(t)$ since X_{i} are iid, thus $\mathbb{E} \hat{P}_{n}(t)=0$. We conclude (note that $\operatorname{Var}(Z)=\operatorname{Var}(Z+c)$ for constants c) that

$$
\begin{array}{rll}
\mathbb{E}\left[\left|\hat{P}_{n}(t)-\hat{P}_{n}(s)\right|^{2}\right] & = & \operatorname{Var}\left(\hat{P}_{n}(t)-\hat{P}_{n}(s)\right)=\operatorname{Var}\left(\frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left(X_{i}^{1+t}-X_{i}^{1+s}\right)\right) \\
\stackrel{X_{i} \text { iid }}{=} & \frac{1}{n} \sum_{i=1}^{n} \operatorname{Var}\left(X_{i}^{1+t}-X_{i}^{1+s}\right)=\operatorname{Var}\left(X_{1}^{1+t}-X_{1}^{1+s}\right) \\
\operatorname{Var}(Z)=\mathbb{E}\left[Z^{2}\right]-\mathbb{E}[Z]^{2} & \mathbb{E}\left[\left|X_{1}^{1+t}-X_{1}^{1+s}\right|^{2}\right] .
\end{array}
$$

By a Taylor's expansion of $f(t)=x^{1+t}$, we have $f^{\prime}(t)=\log (x) x^{1+t}$ and $f(t)-f(s)=(t-s) f^{\prime}(\tilde{t})$ with \tilde{t} between s, t. Thus we have (note that for $C>0$ large enough, we have $\log (x)^{2} x^{4} \leq C x^{5}$ for $x \geq 1$)
$\mathbb{E}\left[\left|\hat{P}_{n}(t)-\hat{P}_{n}(s)\right|^{2}\right] \leq|t-s|^{2} \mathbb{E}\left[\log \left(X_{1}\right)^{2}\left|X_{1}\right|^{2(1+\tilde{t})}\right] \stackrel{\tilde{t} \in[0,1]}{\leq}|t-s|^{2} \mathbb{E}\left[\log \left(X_{1}\right)^{2} X_{1}^{4}\right] \leq C \mathbb{E}\left[X_{1}^{5}\right] \cdot|s-t|^{2}$.
(ii) By (i), we have for all $\varepsilon>0$ that for all $s, t \in[0,1]$:

$$
\mathbb{P}\left(\left|\hat{P}_{n}(s)-\hat{P}_{n}(t)\right| \geq \varepsilon\right) \leq \frac{\mathbb{E}\left[\left|\hat{P}_{n}(s)-\hat{P}_{n}(t)\right|^{2}\right]}{\varepsilon^{2}} \leq \frac{C \mathbb{E}\left[X_{1}^{5}\right]}{\varepsilon^{2}}|s-t|^{2},
$$

i.e. (C1) is fulfilled with $\gamma=1$.

Now let $k \in \mathbb{N}, 0 \leq t_{1}<\ldots<t_{k} \leq 1$. By the multivariate central limit theorem, we have

$$
\left(\begin{array}{c}
\hat{P}_{n}\left(t_{1}\right) \\
\vdots \\
\hat{P}_{n}\left(t_{k}\right)
\end{array}\right)=\frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left(\begin{array}{c}
X_{i}^{1+t_{1}}-\mathbb{E}\left[X_{i}^{1+t_{1}}\right] \\
\vdots \\
X_{i}^{1+t_{k}}-\mathbb{E}\left[X_{i}^{\left.1+t_{k}\right]}\right.
\end{array}\right) \xrightarrow{D} N(0, \Sigma),
$$

where $\Sigma_{i j}=\operatorname{Cov}\left(X_{1}^{1+t_{i}}, X_{1}^{1+t_{j}}\right)=\mathbb{E}\left[X_{1}^{2+t_{i}+t_{j}}\right]-\mathbb{E}\left[X_{1}^{1+t_{i}}\right] \mathbb{E}\left[X_{1}^{1+t_{j}}\right]=E\left(t_{i}+t_{j}+1\right)-E\left(t_{i}\right) E\left(t_{j}\right)$. Since Z has covariance function $\gamma(s, t)=\mathbb{E}\left[Z_{s} Z_{t}\right]=E(s+t+1)-E(s) E(t)$, then $\left(Z_{t_{1}}, \ldots, Z_{t_{k}}\right) \sim$ $N(0, \Sigma)$ (multivariate normal with mean 0 since Z is a centered Gaussian process) with the same Σ as above. Thus we have shown that

$$
\left(\hat{P}_{n}\left(t_{1}\right), \ldots, \hat{P}_{n}\left(t_{k}\right)\right) \xrightarrow{D}\left(Z_{t_{1}}, \ldots, Z_{t_{k}}\right),
$$

i.e. (C2) holds. By the convergence principle, we have that $\hat{P}_{n} \xrightarrow{D} Z$ in $\left(C[0,1],\|\cdot\|_{\infty}\right)$.
(f) (i) By Donsker's theorem, we have

$$
P_{n}:=\left(P_{n}(t)\right)_{t \in[0,1]}:=\left(\frac{1}{\sqrt{n}} S_{\lfloor n t\rfloor}+\frac{1}{\sqrt{n}}(n t-\lfloor n t\rfloor) \varepsilon_{\lfloor n t\rfloor+1}\right)_{t \in[0,1]} \xrightarrow{D} B
$$

in $\left(C[0,1],\|\cdot\|_{\infty}\right)$. The mapping $\Phi:\left(C[0,1],\|\cdot\|_{\infty}\right) \rightarrow(\mathbb{R},|\cdot|), \Phi(f):=\int_{0}^{1}|f(t)| \mathrm{d} t$ is Lipschitz continuous with constant 1 since

$$
\begin{align*}
|\Phi(f)-\Phi(g)| & \leq \int_{0}^{1}| | f(t)\left|-\left|g(t) \| \mathrm{d} t \leq \int_{0}^{1}\right| f(t)-g(t)\right| \mathrm{d} t \tag{*}\\
& \leq\|f-g\|_{\infty}
\end{align*}
$$

By the continuous mapping theorem, we obtain

$$
\Phi\left(P_{n}\right) \xrightarrow{D} \Phi(B)=\int_{0}^{1}\left|B_{t}\right| \mathrm{d} t .
$$

Furthermore, we have by (*),

$$
\begin{aligned}
\left|\Phi\left(P_{n}\right)-\Phi\left(\left(\frac{1}{\sqrt{n}} S_{\lfloor n t\rfloor}\right)_{t \in[0,1]}\right)\right| & \leq \frac{1}{\sqrt{n}} \int_{0}^{1}\left|(n t-\lfloor n t\rfloor) \cdot \varepsilon_{\lfloor n t\rfloor+1}\right| \mathrm{d} t \\
& \leq \frac{1}{\sqrt{n}}\left|\sum_{k=1}^{n}\right| \varepsilon_{k}\left|\int_{(k-1) / n}^{k / n}(n t-(k-1)) \mathrm{d} t\right| \\
& =\frac{1}{2 \sqrt{n}} \underbrace{\frac{1}{n} \sum_{k=1}^{n}\left|\varepsilon_{k}\right|}_{\rightarrow \rightarrow \mathbb{E}\left|\varepsilon_{1}\right|} \xrightarrow{\mathbb{P}} 0
\end{aligned}
$$

by the weak law of large numbers. By Slutzky's theorem, we have

$$
\begin{aligned}
\frac{1}{n^{3 / 2}} \sum_{k=1}^{n-1}\left|S_{k}\right| & =\frac{1}{\sqrt{n}} \sum_{k=1}^{n} \int_{(k-1) / n}^{k / n}\left|S_{k-1}\right| \mathrm{d} t=\frac{1}{\sqrt{n}} \int_{0}^{1}\left|S_{\lfloor n t\rfloor}\right| \mathrm{d} t \\
& =\Phi\left(\left(\frac{1}{\sqrt{n}} S_{\lfloor n t\rfloor}\right)_{t \in[0,1]}\right) \xrightarrow{D} \Phi(B)=\int_{0}^{1}\left|B_{t}\right| \mathrm{d} t
\end{aligned}
$$

(ii) By Donsker's theorem, we have

$$
P_{n}:=\left(P_{n}(t)\right)_{t \in[0,1]}:=\left(\frac{1}{\sqrt{n}} S_{\lfloor n t\rfloor}+\frac{1}{\sqrt{n}}(n t-\lfloor n t\rfloor) \varepsilon_{\lfloor n t\rfloor+1}\right)_{t \in[0,1]} \xrightarrow{D} B
$$

The mapping $\Phi:\left(C[0,1],\|\cdot\|_{\infty}\right) \rightarrow(\mathbb{R},|\cdot|), \Phi(f):=\inf _{t \in[0,1]} f(t)$ is continuous: Note that

$$
\begin{aligned}
& \inf _{t \in[0,1]} f(t) \geq \inf _{t \in[0,1]}\{f(t)-g(t)\}+\inf _{t \in[0,1]} g(t) \\
\Rightarrow \quad & \inf _{t \in[0,1]} g(t)-\inf _{t \in[0,1]} f(t) \leq-\inf _{t \in[0,1]}\{f(t)-g(t)\} \leq \sup _{t \in[0,1]}|f(t)-g(t)|
\end{aligned}
$$

Swapping the roles of f, g we obtain the same inequality but with different sign on the left hand side, leading to

$$
|\Phi(f)-\Phi(g)| \leq\|f-g\|_{\infty} .
$$

This shows that Φ is even Lipschitz continuous with Lipschitz constant 1.
Application of the continuous mapping theorem yields

$$
\Phi\left(P_{n}\right) \xrightarrow{D} \Phi(B)=\inf _{t \in[0,1]}\left|B_{t}\right| .
$$

Furthermore, we have by the Lipschitz continuity of Φ,

$$
\begin{aligned}
\left|\Phi\left(P_{n}\right)-\Phi\left(\left(\frac{1}{\sqrt{n}} S_{\lfloor n t\rfloor}\right)_{t \in[0,1]}\right)\right| & \leq \frac{1}{\sqrt{n}} \sup _{t \in[0,1]}|n t-\lfloor n t\rfloor| \cdot\left|\varepsilon_{\lfloor n t\rfloor+1}\right| \\
& \leq \frac{1}{\sqrt{n}} \max _{k=1, \ldots, n}\left|\varepsilon_{k}\right| \xrightarrow{\mathbb{P}} 0
\end{aligned}
$$

by the hint. By Slutzky's theorem, we have

$$
\frac{1}{\sqrt{n}} \min _{k=0, \ldots, n} S_{k}=\inf _{t \in[0,1]} \frac{1}{\sqrt{n}} S_{\lfloor n t]}=\Phi\left(\left(\frac{1}{\sqrt{n}} S_{\lfloor n t\rfloor}\right)_{t \in[0,1]}\right) \xrightarrow{D} \inf _{t \in[0,1]} B_{t}
$$

which gives the result.
(iii) By Donsker's theorem, we have

$$
P_{n}:=\left(P_{n}(t)\right)_{t \in[0,1]}:=\left(\frac{1}{\sqrt{n}} \sum_{i=1}^{\lfloor n t\rfloor}\left(\varepsilon_{i}-\mu\right)+\frac{1}{\sqrt{n}}(n t-\lfloor n t\rfloor)\left(\varepsilon_{\lfloor n t\rfloor+1}-\mu\right)\right)_{t \in[0,1]} \xrightarrow{D} B
$$

in $\left(C[0,1],\|\cdot\|_{\infty}\right)$ since $\mathbb{E}\left[\left(\varepsilon_{1}-\mu\right)^{4}\right]<\infty$ and $\mathbb{E}\left(\varepsilon_{1}-\mu\right)=0$. The mapping $\Phi:\left(C[0,1],\|\cdot\|_{\infty}\right) \rightarrow$ $\left(C[0,1],\|\cdot\|_{\infty}\right), \Phi(f):=\{t \mapsto f(t)-t f(1)\}$ is Lipschitz continuous with constant 2 since

$$
|\Phi(f)-\Phi(g)| \leq \sup _{t \in[0,1]}|f(t)-g(t)|+\sup _{t \in[0,1]}|t| \cdot|f(1)-g(1)| \leq 2\|f-g\|_{\infty}
$$

By the continuous mapping theorem, we obtain (from the lecture it is known that $\left(B_{t}-t B_{1}\right)_{t \in[0,1]}$ is a Brownian Bridge):

$$
\Phi\left(P_{n}\right) \xrightarrow{D} \Phi(B)=\left(B_{t}-t B_{1}\right)_{t \in[0,1]} \stackrel{d}{=} B^{\circ} .
$$

Here, we have (the μ 's cancel out!)

$$
\begin{aligned}
\Phi\left(P_{n}\right)_{t} & =\left(\frac{1}{\sqrt{n}} \sum_{i=1}^{\lfloor n t\rfloor}\left(\varepsilon_{i}-\mu\right)+\frac{1}{\sqrt{n}}(n t-\lfloor n t\rfloor)\left(\varepsilon_{\lfloor n t\rfloor+1}-\mu\right)\right)-t \cdot\left(\frac{1}{\sqrt{n}} \sum_{i=1}^{n}\left(\varepsilon_{i}-\mu\right)\right) \\
& =\left(\frac{1}{\sqrt{n}} \sum_{i=1}^{\lfloor n t\rfloor} \varepsilon_{i}+\frac{1}{\sqrt{n}}(n t-\lfloor n t\rfloor) \varepsilon_{\lfloor n t\rfloor+1}\right)-t \cdot\left(\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \varepsilon_{i}\right) \\
& =\frac{1}{\sqrt{n}}\left(S_{\lfloor n t\rfloor}-t \cdot S_{n}\right)+\frac{1}{\sqrt{n}}(n t-\lfloor n t\rfloor) \varepsilon_{\lfloor n t\rfloor+1}=R_{n}(t),
\end{aligned}
$$

which gives the desired convergence result.

