
Exam preparation sheet - Solutions part 3

0.4 Weak convergence in C[0, 1]

Solutions: For (a) - (e) we use the convergence principle from the lecture. This means for
Xn

D→ X in (C[0, 1], ‖ · ‖∞) we have to show that

(C1) There exist γ, κ > 0, K ∈ R and n0 ∈ N such that

∀s, t ∈ [0, 1], n ≥ n0, ε > 0 : P(|Xn(s)−Xn(t)| ≥ ε) ≤ K|s− t|1+γ

εκ
.

(C2) The finite-dimensional distributions converge, i.e. for all k ∈ N, for all 0 ≤ t1 < ... < tk ≤
1, (Xn(t1), ..., Xn(tk))

D→ (X(t1), ..., X(tk)).

(a) Since X(n) is a Gaussian process, we have that X(n)(s)−X(n)(t) ∼ N(an, τ
2
n) with

an = E[X(n)(s)−X(n)(t)] = µn(t)− µn(s) =
1

n

(
sin(t)− sin(s)

)
τ 2
n = Var(X(n)(s)−X(n)(t)) = Var(X(n)(s)) + Var(X(n)(t))− 2Cov(X(n)(s), X(n)(t))

=
[
s− 1

2
√
n

]
+
[
t− 1

2
√
n

]
−
[
s+ t−

√
(s− t)2 +

1

n

]
=

√
(s− t)2 +

1

n
− 1√

n

√
x−√y= x−y√

x+
√

y

=
(s− t)2√

(s− t)2 + 1
n

+ 1√
n

≤ (s− t)2√
(s− t)2

= |s− t|

With the hint and | sin(s)− sin(t)| ≤ |s− t| we conclude that

E
[
|X(n)(s)−X(n)(t)|4

]
= a4

n + 6a2
nτ

2
n + 3τ 4

n ≤
1

n4
|s− t|4 +

6

n2
|s− t|2 · |s− t|+ 3|s− t|2

Since |s− t| ≤ 1 and n ≥ 1, we obtain that E
[
|X(n)(s)−X(n)(t)|4

]
≤ 10|s− t|2. We conclude

with Markov’s inequality that

P(|X(n)(s)−X(n)(t)| ≥ ε) ≤
E
[
|X(n)(s)−X(n)(t)|4

]
ε4

≤ 10|s− t|2

ε4
,

i.e. (C1) is satisfied.
Now let k ∈ N, 0 ≤ t1 < ... < tk ≤ 1. Since X(n) is a Gaussian process, (X(n)(t1), ..., X(n)(tk)) ∼
N(mn,Σn) with mn ∈ Rk,Σn ∈ Rk×k. Here,

mn =

µn(t1)
...

µn(tk)

 =
1

n

sin(t1)
...

sin(tk)

→ 0,

Σn,ij = Cov(X(n)(ti), X
(n)(tj)) =

1

2
(ti + tj −

√
(ti − tj)2 +

1

n
)→ 1

2
(ti + tj − |ti − tj|) = min{ti, tj}.

Since normal distributions converge if the parameters converge, we have shown that

(X(n)(t1), ..., X(n)(tk))
D→ N(m,Σ)

with m = 0 and Σij = min{ti, tj} which is exactly the distribution of (Bt1 , ..., Btk), where B is
a Brownian motion. Thus we have shown that

(X(n)(t1), ..., X(n)(tk))
D→ (Bt1 , ..., Btk).
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This shows (C2) and we conclude that X(n) D→ B in (C[0, 1], ‖ · ‖∞).

(b) (i) Note that Eεi = 0 and thus EXn(a) = 0. We conclude that

E[|Xn(a)−Xn(a′)|2] = Var(Xn(a)−Xn(a′))
k = 0 vanishes

= Var
( n∑
k=1

(ak − (a′)k)εn−k

)
εi iid
=

n∑
k=1

Var((ak − (a′)k)εn−k) = σ2

n∑
k=1

(ak − (a′)k)2.

By Taylor’s formula applied to f(x) = xk, we have f(x) − f(x′) = (x − x′)f ′(x̃) with some
x̃ between x, x′. In the above setting, we obtain for (ak − (a′)k)2 =

(
(a − a′)kãk−1

)2 ≤ (a −
a′)2k2(1− δ)2(k−1) since ã is between a, a′ which are both in A. Thus by using

∑n
k=1 ≤

∑∞
k=1,

E[|Xn(a)−Xn(a′)|2] ≤ (a− a′)2 σ2

∞∑
k=1

k2(1− δ)2(k−1)

︸ ︷︷ ︸
=:C

,

where the sum converges (and is <∞) for instance by quotient criterium.
(ii) By (i), we have for all ε > 0 that for all a, a′ ∈ A:

P(|Xn(a)−Xn(a′)| ≥ ε) ≤ E[|Xn(a)−Xn(a′)|2]

ε2
≤ C

ε2
|a− a′|2,

i.e. (C1) is fulfilled with γ = 1.
For l ∈ N, −1 + δ ≤ a1 < ... < al ≤ 1− δ, we have

Xn(a1)
...

Xn(al)

 =
n∑
k=0

εn−k ·

a
k
1
...
akl

 =


1 a1 . . . an1
1 a2 . . . an2
...

...
...

1 al . . . anl


︸ ︷︷ ︸

=:B

·

εn...
ε0


︸ ︷︷ ︸

∼N(0,σ2Il×l)

∼ N(0, σ2BB′︸ ︷︷ ︸
=:Σ(n)

).

(B is the Vandermonde matrix and thus has full rank since the ai are all different). We have

Σ
(n)
ij = Cov(Xn(ai), Xn(aj)) = Cov

( n∑
k=0

aki εn−k,
n∑
k=0

akj εn−k
) εi iid

= σ2

n∑
k=0

(aiaj)
k

=
1− (aiaj)

n+1

1− aiaj
→ σ2

1− aiaj
.

This shows that Σ(n) converges to Σ with Σij = σ2

1−aiaj . Since Gaussian distributions converge if

the parameters converge, we obtain that (Xn(a1), ..., Xn(al))
D→ N(0,Σ). Since Z is a centered

Gaussian process with covariance function Cov(Za, Za′) = σ2

1−aa′ , we have that (Za1 , ..., Zal) ∼
N(0,Σ) with the same Σ as before. Thus we have shown that

(Xn(a1), ..., Xn(al))
D→ (Za1 , ..., Zal),

i.e. (C2). By the convergence principle (applied to C(A) as the hint suggests), we have Xn
D→ Z

in (C(A), ‖ · ‖∞).
(iii) By the hint, we define Φ : (C(A)×A, ‖·‖∞×|·|)→ (R, |·|),Φ(f, x) := f(x). Φ is continuous,
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since for ‖fn − f‖∞ → 0 and |xn − x| → 0, we have |Φ(fn, xn) − Φ(f, x)| = |fn(xn) − f(x)| ≤
|fn(xn)− f(xn)|+ |f(xn)− f(x)| ≤ ‖fn − f‖∞ + |f(xn)− f(x)| → 0 since f is continuous and
xn → x.
Since Tn

P→ τ and τ is a deterministic constant, we have by a theorem from the lecture and (ii)
that (Xn, Tn)

D→ (Z, τ) in (C(A)× A, ‖ · ‖∞ × | · |).
By the continuous mapping theorem, we obtain that Xn(Tn) = Φ(Xn, Tn)

D→ Φ(Z, τ) = Zτ ∼
N(0, σ2

1−τ2 ) (Z is a centered Gaussian process, so Zτ is normal distributed with mean 0 and
variance Var(Zτ ) = Cov(Zτ , Zτ ) = σ2

1−τ2 ).

(c) (i) Note that EÊn(M) = 1
n

∑n
i=1 E[XihM(Xi)] = E[X1hM(X1)] = E(M) since Xi are iid,

thus EP̂n(M) = 0. We conclude (note that Var(Z) = Var(Z + c) for constants c) that

E
[
|P̂n(M)− P̂n(M ′)|2

]
= Var(P̂n(M)− P̂n(M ′)) = Var

( 1√
n

n∑
i=1

(
XihM(Xi)−XihM ′(Xi)

))
Xi iid

=
1

n

n∑
i=1

Var(XihM(Xi)−XihM ′(Xi)) = Var(X1hM(X1)−X1hM ′(X1))

Var(Z)=E[Z2]−E[Z]2

≤ E[X2
1 |hM(X1)− hM ′(X1)|2].

It is easy to see that hM(x)− hM ′(x) ≤ 1
L
· |M −M ′| independent of x. Proof: w.l.o.g. assume

that M < M ′. It holds that

hM(x) =


1, x ∈ [−M,M ],

0, x ∈ [−(M + L), (M + L)],
1
L

(x+ (M + L)), x ∈ [−(M + L),M ],
1
L

((M + L)− x), x ∈ [M,M + L].

w.l.o.g. assume that x ∈ [M,M + L] (the other cases are easier). If x ∈ [M ′,M ′ + L], then
|hM(x) − hM ′(x)| = 1

L
|(M + L − x) − (M ′ + L − x)| = 1

L
|M − M ′|. If x ∈ [M,M ′], then

|hM(x)− hM ′(x)| = | 1
L

(M + L− x)− 1| = 1
L
|M − x| ≤ 1

L
|M −M ′|.

Thus we have
E
[
|P̂n(M)− P̂n(M ′)|2

]
≤ E[X2

1 ]

L2
|M −M ′|2.

(ii) By (i), we have for all ε > 0 that for all M,M ′ ∈ [0, 1]:

P(|P̂n(M)− P̂n(M ′)| ≥ ε) ≤ E[|P̂n(M)− P̂n(M ′)|2]

ε2
≤ E[X2

1 ]

L2ε2
|M −M ′|2,

i.e. (C1) is fulfilled with γ = 1.
Now let k ∈ N, 0 ≤M1 < ... < Mk ≤ 1. By the multivariate central limit theorem, we haveP̂n(M1)

...

P̂n(Mk)

 =
1√
n

n∑
i=1

XihM1(Xi)− E[XihM1(Xi)]
...

XihMk
(Xi)− E[XihMk

(Xi)]

 D→ N(0, Σ),

where Σij = Cov(X1hMi
(X1), X1hMj

(X1)). So if we ask Z to have the covariance function
γ(M,M ′) = E[ZMZM ′ ] = Cov(X1hM(X1), X1hM ′(X1)), then (ZM1 , ..., ZMk

) ∼ N(0,Σ) (multi-
variate normal with mean 0 since Z is a centered Gaussian process). Thus with this choice of
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γ(M,M ′) we have shown that

(P̂n(M1), ..., P̂n(Mk))
D→ (ZM1 , ..., ZMk

),

i.e. (C2) holds. By the convergence principle, we have that P̂n
D→ Z in (C[0, 1], ‖ · ‖∞).

(d) (i) Note that EÊn(t) = 1
n

∑n
i=1 E[sin(Xit)] = E[sin(X1t)] = E(t) since Xi are iid, thus

EP̂n(t) = 0. We conclude (note that Var(Z) = Var(Z + c) for constants c) that

E
[
|P̂n(t)− P̂n(s)|2

]
= Var(P̂n(t)− P̂n(s)) = Var

( 1√
n

n∑
i=1

(
sin(Xit)− sin(Xis)

))
Xi iid

=
1

n

n∑
i=1

Var(sin(Xit)− sin(Xis)) = Var(sin(X1t)− sin(X1s))

Var(Z)=E[Z2]−E[Z]2

≤ E[| sin(X1t)− sin(X1s)|2] ≤ E[X2
1 ] · |s− t|2,

where we used | sin(x)− sin(y)| ≤ |x− y|.
(ii) By (i), we have for all ε > 0 that for all s, t ∈ [0, 1]:

P(|P̂n(s)− P̂n(t)| ≥ ε) ≤ E[|P̂n(s)− P̂n(t)|2]

ε2
≤ E[X2

1 ]

ε2
|s− t|2,

i.e. (C1) is fulfilled with γ = 1.
Now let k ∈ N, 0 ≤ t1 < ... < tk ≤ 1. By the multivariate central limit theorem, we haveP̂n(t1)

...

P̂n(tk)

 =
1√
n

n∑
i=1

sin(Xit1)− E[sin(Xit1)]
...

sin(Xitk)− E[sin(Xitk)]

 D→ N(0, Σ),

where Σij = Cov(sin(X1t1), sin(X1tk)). So if we ask Z to have the covariance function γ(s, t) =
E[ZsZt] = Cov(sin(X1s), sin(X1t)), then (Zt1 , ..., Ztk) ∼ N(0,Σ) (multivariate normal with
mean 0 since Z is a centered Gaussian process). Thus with this choice of γ(s, t) we have shown
that

(P̂n(t1), ..., P̂n(tk))
D→ (Zt1 , ..., Ztk),

i.e. (C2) holds. By the convergence principle, we have that P̂n
D→ Z in (C[0, 1], ‖ · ‖∞).

(iii) By the hint, Φ : (C[0, 1], ‖ · ‖∞) → (R, | · |),Φ(f) := supt∈[0,1] |f(t)| is continuous. By the
continuous mapping theorem applied to (ii) we obtain that

√
n sup
t∈[0,1]

|Ên(t)− E(t)| = sup
t∈[0,1]

|P̂n(t)| = Φ(P̂n)
D→ Φ(Z) = sup

t∈[0,1]

|Zt|.

For each ω ∈ Ω, the right hand side supt∈[0,1] |Zt(ω)| is finite since t 7→ Zt(ω) is continuous. By
Slutzky’s theorem, we obtain

sup
t∈[0,1]

|Ên(t)− E(t)| = 1√
n
·
√
n sup
t∈[0,1]

|Ên(t)− E(t)| D→ 0 · sup
t∈[0,1]

|Zt| = 0,

i.e. supt∈[0,1] |Ên(t)− E(t)| P→ 0 (the limit is constant). We obtain that∣∣ sup
t∈[0,1]

Ên(t)− sup
t∈[0,1]

E(t)
∣∣ ≤ sup

t∈[0,1]

|Ên(t)− E(t)| P→ 0,
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which implies that supt∈[0,1] Ên(t)
P→ supt∈[0,1]E(t). Since X1 ∼ U [0, 1], we have E(t) =

E[sin(X1t)] =
∫ 1

0
sin(xt) dx = 1−cos(t)

t
which is maximized on [0, 1] in t = 1 (by the hint

that E(t) is nondecreasing in [0, 1], i.e. supt∈[0,1]E(t) = 1− cos(1). This shows that

sup
t∈[0,1]

Ên(t)
P→ 1− cos(1).

(e) (i) Note that EÊn(t) = 1
n

∑n
i=1 E[X1+t

1 ] = E[X1+t
1 ] = E(t) since Xi are iid, thus EP̂n(t) = 0.

We conclude (note that Var(Z) = Var(Z + c) for constants c) that

E
[
|P̂n(t)− P̂n(s)|2

]
= Var(P̂n(t)− P̂n(s)) = Var

( 1√
n

n∑
i=1

(
X1+t
i −X1+s

i

))
Xi iid

=
1

n

n∑
i=1

Var(X1+t
i −X1+s

i ) = Var(X1+t
1 −X1+s

1 )

Var(Z)=E[Z2]−E[Z]2

≤ E[|X1+t
1 −X1+s

1 |2].

By a Taylor’s expansion of f(t) = x1+t, we have f ′(t) = log(x)x1+t and f(t)−f(s) = (t−s)f ′(t̃)
with t̃ between s, t. Thus we have (note that for C > 0 large enough, we have log(x)2x4 ≤ Cx5

for x ≥ 1)

E
[
|P̂n(t)− P̂n(s)|2

]
≤ |t−s|2E[log(X1)2|X1|2(1+t̃)]

t̃∈[0,1]

≤ |t−s|2E[log(X1)2X4
1 ] ≤ CE[X5

1 ] · |s−t|2.

(ii) By (i), we have for all ε > 0 that for all s, t ∈ [0, 1]:

P(|P̂n(s)− P̂n(t)| ≥ ε) ≤ E[|P̂n(s)− P̂n(t)|2]

ε2
≤ CE[X5

1 ]

ε2
|s− t|2,

i.e. (C1) is fulfilled with γ = 1.
Now let k ∈ N, 0 ≤ t1 < ... < tk ≤ 1. By the multivariate central limit theorem, we haveP̂n(t1)

...

P̂n(tk)

 =
1√
n

n∑
i=1

X
1+t1
i − E[X1+t1

i ]
...

X1+tk
i − E[X1+tk

i ]

 D→ N(0, Σ),

where Σij = Cov(X1+ti
1 , X

1+tj
1 ) = E[X

2+ti+tj
1 ]−E[X1+ti

1 ]E[X
1+tj
1 ] = E(ti + tj + 1)−E(ti)E(tj).

Since Z has covariance function γ(s, t) = E[ZsZt] = E(s+t+1)−E(s)E(t), then (Zt1 , ..., Ztk) ∼
N(0,Σ) (multivariate normal with mean 0 since Z is a centered Gaussian process) with the
same Σ as above. Thus we have shown that

(P̂n(t1), ..., P̂n(tk))
D→ (Zt1 , ..., Ztk),

i.e. (C2) holds. By the convergence principle, we have that P̂n
D→ Z in (C[0, 1], ‖ · ‖∞).

(f) (i) By Donsker’s theorem, we have

Pn := (Pn(t))t∈[0,1] :=
( 1√

n
Sbntc +

1√
n

(nt− bntc)εbntc+1

)
t∈[0,1]

D→ B

in (C[0, 1], ‖ · ‖∞). The mapping Φ : (C[0, 1], ‖ · ‖∞)→ (R, | · |), Φ(f) :=
∫ 1

0
|f(t)| dt is Lipschitz

continuous with constant 1 since∣∣Φ(f)− Φ(g)
∣∣ ≤ ∫ 1

0

∣∣|f(t)| − |g(t)|
∣∣ dt ≤ ∫ 1

0

|f(t)− g(t)| dt (∗)

≤ ‖f − g‖∞.
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By the continuous mapping theorem, we obtain

Φ(Pn)
D→ Φ(B) =

∫ 1

0

|Bt| dt.

Furthermore, we have by (*),∣∣∣Φ(Pn)− Φ
(( 1√

n
Sbntc

)
t∈[0,1]

)∣∣∣ ≤ 1√
n

∫ 1

0

∣∣(nt− bntc) · εbntc+1

∣∣ dt

≤ 1√
n

∣∣∣ n∑
k=1

|εk|
∫ k/n

(k−1)/n

(nt− (k − 1)) dt
∣∣∣

=
1

2
√
n

1

n

n∑
k=1

|εk|︸ ︷︷ ︸
P→E|ε1|

P→ 0

by the weak law of large numbers. By Slutzky’s theorem, we have

1

n3/2

n−1∑
k=1

|Sk| =
1√
n

n∑
k=1

∫ k/n

(k−1)/n

|Sk−1| dt =
1√
n

∫ 1

0

|Sbntc| dt

= Φ
(( 1√

n
Sbntc

)
t∈[0,1]

) D→ Φ(B) =

∫ 1

0

|Bt| dt

(ii) By Donsker’s theorem, we have

Pn := (Pn(t))t∈[0,1] :=
( 1√

n
Sbntc +

1√
n

(nt− bntc)εbntc+1

)
t∈[0,1]

D→ B

The mapping Φ : (C[0, 1], ‖ · ‖∞)→ (R, | · |), Φ(f) := inft∈[0,1] f(t) is continuous: Note that

inf
t∈[0,1]

f(t) ≥ inf
t∈[0,1]

{
f(t)− g(t)

}
+ inf

t∈[0,1]
g(t)

⇒ inf
t∈[0,1]

g(t)− inf
t∈[0,1]

f(t) ≤ − inf
t∈[0,1]

{
f(t)− g(t)

}
≤ sup

t∈[0,1]

|f(t)− g(t)|

Swapping the roles of f, g we obtain the same inequality but with different sign on the left hand
side, leading to ∣∣Φ(f)− Φ(g)

∣∣ ≤ ‖f − g‖∞.
This shows that Φ is even Lipschitz continuous with Lipschitz constant 1.
Application of the continuous mapping theorem yields

Φ(Pn)
D→ Φ(B) = inf

t∈[0,1]
|Bt|.

Furthermore, we have by the Lipschitz continuity of Φ,∣∣∣Φ(Pn)− Φ
(( 1√

n
Sbntc

)
t∈[0,1]

)∣∣∣ ≤ 1√
n

sup
t∈[0,1]

∣∣nt− bntc∣∣ · |εbntc+1|

≤ 1√
n

max
k=1,...,n

|εk|
P→ 0

by the hint. By Slutzky’s theorem, we have

1√
n

min
k=0,...,n

Sk = inf
t∈[0,1]

1√
n
Sbntc = Φ

(( 1√
n
Sbntc

)
t∈[0,1]

) D→ inf
t∈[0,1]

Bt

6



which gives the result.
(iii) By Donsker’s theorem, we have

Pn := (Pn(t))t∈[0,1] :=
( 1√

n

bntc∑
i=1

(εi − µ) +
1√
n

(nt− bntc)(εbntc+1 − µ)
)
t∈[0,1]

D→ B

in (C[0, 1], ‖·‖∞) since E[(ε1−µ)4] <∞ and E(ε1−µ) = 0. The mapping Φ : (C[0, 1], ‖·‖∞)→
(C[0, 1], ‖ · ‖∞), Φ(f) := {t 7→ f(t)− tf(1)} is Lipschitz continuous with constant 2 since∣∣Φ(f)− Φ(g)

∣∣ ≤ sup
t∈[0,1]

|f(t)− g(t)|+ sup
t∈[0,1]

|t| · |f(1)− g(1)| ≤ 2‖f − g‖∞.

By the continuous mapping theorem, we obtain (from the lecture it is known that (Bt−tB1)t∈[0,1]

is a Brownian Bridge):

Φ(Pn)
D→ Φ(B) = (Bt − tB1)t∈[0,1]

d
= B◦.

Here, we have (the µ’s cancel out!)

Φ(Pn)t =
( 1√

n

bntc∑
i=1

(εi − µ) +
1√
n

(nt− bntc)(εbntc+1 − µ)
)
− t ·

( 1√
n

n∑
i=1

(εi − µ)
)

=
( 1√

n

bntc∑
i=1

εi +
1√
n

(nt− bntc)εbntc+1

)
− t ·

( 1√
n

n∑
i=1

εi

)
=

1√
n

(Sbntc − t · Sn) +
1√
n

(nt− bntc)εbntc+1 = Rn(t),

which gives the desired convergence result.

7


