Exam preparation sheet - Solutions part 3

0.4 Weak convergence in C|0, 1]

Solutions: For (a) - (e) we use the convergence principle from the lecture. This means for
X, 3 X in (C0,1], ]| - [[so) we have to show that

(C1) There exist 7,k > 0, K € R and ny € N such that

Kls —t|'™

Vs, t € 10,1],n > ng,e > 0: P(|X,(s) — X, (t)] > ¢) < e

(C2) The finite-dimensional distributions converge, i.e. for all k € N, for all 0 <t} < ... <t} <
L (Xa(ty), o Xa(t)) 2 (X (1), oy X ().
(a) Since X™ is a Gaussian process, we have that X™(s) — X" (¢) ~ N(a,, 72) with

i = E[XO(s) = XO0] = inlt) — pals) = - (sin(t) — sins))

Ta = Var(X®(s) = X®(1)) = Var(X®(s)) + Var(X"(#)) — 2Cov(X " (s), X" (1))

n

= [S—#]jL[t—ﬁ]—[s—i—t— (s—t)z—i—l]

n

(s —1)°

(s —t)?
non \/7++ \/ﬁ

With the hint and |sin(s) — sin(¢)| < |s — t| we conclude that

= |s — 1

1 6
E[|X™(s) = X™(@®)|*] = ab + 6a272 + 372 < —|s —t]* + s — t]* - [s — t| + 3[s — t]?
n n

Since |s —t| <1 and n > 1, we obtain that E[|X ™ (s) — X™(¢)|*] < 10[s — ¢|*>. We conclude
with Markov’s inequality that

E[|X(s) - XO0)] _ 10)s — ¢
gt - g

P(X™(s) = X™(t)] > ¢) <

9

i.e. (Cl) is satisfied.
Now let k € N,0 <t < ... <t < 1. Since X™ is a Gaussian process, (X ™ (t1), ..., X (t;)) ~
N(my,,¥,) with m,, € R¥ 3, € R*** Here,

fn (t1) sin(tq)
my, = : = : — 0,
fin (tr) sin(ty)

1 .
—(ti + tj — |tz — tj|) = mln{t,;,tj}.

n n 1 1

Since normal distributions converge if the parameters converge, we have shown that
(X (t2), o, X (t0)) 55 N(m, 2)

with m = 0 and X;; = min{t;, ¢;} which is exactly the distribution of (B, ..., By, ), where B is
a Brownian motion. Thus we have shown that

(X (1), ..., XD () B (Byy, .., By,).
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This shows (C2) and we conclude that X ™) 2 Bin (Cl0, 1], || - [|oo)-

(b) (i) Note that Ee; = 0 and thus EX,,(a) = 0. We conclude that

n

E[|Xo(a) = Xa(@)] = Var(Xn(a) = Xa(a) "= 2" Var( 3 (0" — (@) )en i)

B
Il
—_

n

ai:iid Z\/ar((ak - (a/)k)gn—k) — 0_2 (akz . (a/)k)2‘

By Taylor’s formula applied to f(x) = 2*, we have f(x) — f(2') = (z — ') f(Z) with some
T between x,z’. In the above setting, we obtain for (a* — (a/)¥)? = ((a — a’)kd’“‘l)2 < (a—
a')2k?(1 — §)2 =D since a is between a,a’ which are both in A. Thus by using > _p_; < Y50,

E[|X,(a) = Xa(d)P] < (a—d)?0® Y k31— 6)" Y,
k=1

J

v~

=:C

where the sum converges (and is < co) for instance by quotient criterium.
(ii) By (i), we have for all € > 0 that for all a,ad” € A:

E[|X,(a) — X, (a")|? C
(1 Xul0) ~ Xfa)| > o) < DD 2Kl Gy
i.e. (C1) is fulfilled with v = 1.
ForleN, —14+0<a; <..<aq <1-—9, we have
i 1 ag ... adf
Xn(ar) n aj n En
1 ay ... ay
: = e || = . . |~ N(0,0°BB).
k=0 k : : =z
X (ay) a 1 a ar €0
h 5 7 ~N(0,021151)

(B is the Vandermonde matrix and thus has full rank since the a; are all different). We have

z:ﬁ;‘) = Cov(X,(a;), Xn(a;)) = Cov( Y afen_i, Za}“ En—) sdd JQZ(aiaj)k
k=0 k=0 k=0
1 — (a5a;)"! o2

1— aiaj 1-— CliCLj

This shows that £ converges to ¥ with Y= % Since Gaussian distributions converge if

the parameters converge, we obtain that (X, (a1), ..., X, (a;)) 2 N(0,%). Since Z is a centered
0_2

Gaussian process with covariance function Cov(Z,, Zo) = 7%, we have that (Z,,, ..., Z,,) ~

N(0,3) with the same ¥ as before. Thus we have shown that
(Xn(ar), oo X)) 2 (Zays oy Zay),
i.e. (C2). By the convergence principle (applied to C'(A) as the hint suggests), we have X, Bz
in (C(A), ]| - [loo)-
(iii) By the hint, we define @ : (C(A) X A, || |loo X|-]) = (R, |]), ®(f,z) := f(z). ® is continuous,
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since for ||f, — fllco = 0 and |z, — x| — 0, we have |®(f,,z,) — ®(f,x)| = |fu(z,) — f(2)| <

[fu(@n) = f(@n)l + 1f(@n) = f@)] < fu = flloo + | f(wa) = f(2)] — 0 since f is continuous and
Ty — .

Since T, —  and 7 is a deterministic constant, we have by a theorem from the lecture and (ii)
that (X,,T,) S (Z,7)in (C(A) X A, || |loo X |- ])-

By the continuous mapping theorem, we obtain that X,,(7},) = ®(X,,T,) Y O(Z,1) =2, ~
N(0, %) (Z is a centered Gaussian process, so Z, is normal distributed with mean 0 and

variance Var(Z,;) = Cov(Z:, Z;) = t%).

(c) (i) Note that EE,(M) = 13" E[X;hy(X;)] = E[X1hy(X1)] = E(M) since X; are iid,
thus EP, (M) = 0. We conclude (note that Var(Z) = Var(Z + ¢) for constants ¢) that
) —

E[|P.(M) — Pu(M')P]

_ Var(P,(M) — P,(M")) = Var(% Z (Xihar (X)) — Xihaw (XZ-))>

X; iid

%Zn:Var(XihM(Xi) — Xiha(X;)) = Var(Xihpy (X)) — Xqaha (X4))

Var(z)=E|[2?]-E[Z)?
<

E[X7|ha(X1) = har (X1)]?].

It is easy to see that hys(z) — hap(z) < 1 - |M — M'| independent of z. Proof: w.l.o.g. assume
that M < M'. It holds that

1, € [-M, M],
har(@) = 0, €[ (M+L) (M + L)],
MR %(er(M—I—L)), e [—(M+ L), M],
%((Z\/[—l—L)—x), € [M, M + L.

w.lo.g. assume that x € [M, M + L| (the other cases are easier). If x € [M’', M’ + L], then
\ha(z) — hap(x)] = FI(M + L —2) = (M' + L —2)] = $|M — M'|. If « € [M, M’], then
\hae(z) — hap(2)| = [ (M + L —2) — 1| = $|M —z| < $|M — M'|.

Thus we have
E[X?

L?
(ii) By (i), we have for all ¢ > 0 that for all M, M’ € [0, 1]:

E[|Pu(M) = Py(M)P] < =55 |M — M2,

E[| Pu(M) = P,(M")[?] < E[X7]
g2 - L2

P(|P(M) = Pu(M')| 2 €) < 7 |M =M%,

i.e. (C1) is fulfilled with v = 1.
Now let k € N, 0 < M; < ... < M < 1. By the multivariate central limit theorem, we have
n [ Xihan (Xi) — E[XGhag (X5)]

B fZ z SN, %),
P, (M) = A Xihag (Xs) — E[XGha, (X5)]

pn(M1>

where Y;; = Cov(X1hag(X1), X1ha, (X1)). So if we ask Z to have the covariance function
Y(M, M) = E[ZyZyp]) = Cov(Xiha (X1), Xiha (X1)), then (Zyy,, ..., Zyr,,) ~ N(0,%) (multi-
variate normal with mean 0 since Z is a centered Gaussian process). Thus with this choice of

3



~v(M, M") we have shown that
(Bo(My), ., Po(M)) B (Zat,s s Zas),
i.e. (C2) holds. By the convergence principle, we have that P, A Zin (C10, 1], ]|+ [loo)-

d) (i) Note that EEn t) = 13" E[sin(X;t)] = E[sin(X1t)] = E(t) since X; are iid, thus
A =1

T on

EP,(t) = 0. We conclude (note that Var(Z) = Var(Z + ¢) for constants c) that

A

E[12,(t) — Bu(s)P’] _ Var(Pa(t) — Py (s)) = w(% 3 (sin(Xit) = sin(Xis)

X, iid

% Z Var(sin(X;t) — sin(X;s)) = Var(sin(X;t) — sin(X;s))

Var(z)=E[22]-E[2)?
<

E[| sin(X1t) — sin(X;5)]?] < E[X7] - |s — t|?,

where we used |sin(z) — sin(y)| < |z — y|.
(i) By (i), we have for all € > 0 that for all s,¢ € [0, 1]:

A

E[|P.(s) — Pa(t)?] < EX7
g2 =

P(|By(s) — Po(t)] > 2) < Ls — 42,
i.e. (C1) is fulfilled with v = 1.
Now let £k € N, 0 <ty < ... <t < 1. By the multivariate central limit theorem, we have

A

P,(t1) . [sin(Xity) — E[sin(X;t1)]

] = % > z 3N, %),
P, (ty,) =1 \sin(X;t) — E[sin(X;t1)]

where ¥,;; = Cov(sin(Xit;),sin(Xt;)). So if we ask Z to have the covariance function (s, t) =
E[Z;Z;] = Cov(sin(X;s),sin(X;t)), then (Zy,,...,Z;, ) ~ N(0,%) (multivariate normal with
mean 0 since Z is a centered Gaussian process). Thus with this choice of v(s,t) we have shown
that R R

(Potr), .., Bate)) B (Zsy, o 7).

i.e. (C2) holds. By the convergence principle, we have that P, 2 Zin (C10, 1], ]|+ []oo)-
(iii) By the hint, ® : (C[0, 1}, ] - [|oo) = (R, |- [), ®(f) := supsep) [ f(t)| is continuous. By the
continuous mapping theorem applied to (ii) we obtain that

Vi sup [B,(t) = E()] = sup [Bu(t)] = B(B) B 8(2) = sup |Zi].

te[0,1] te[0,1] te[0,1]

For each w € €2, the right hand side sup;c|g 1 [Z:(w)]| is finite since t — Z;(w) is continuous. By
Slutzky’s theorem, we obtain

“ 1 “
sup |E,(t) — B(t)] = —= - v/n sup |En(t) — E(t)] 30+ sup |Z,| =0,
tel0,1] \/ﬁ te[0,1] te(0,1]

i.e. sup;epo 1 |E.(t) — E(t)) Lo (the limit is constant). We obtain that

| sup En(t) — sup E(t)| < sup |En(t) — E(t)| =0,
t€[0,1] te[0,1] te[0,1]



which implies that sup,cpy EL(t) 5 SUpyejoq (). Since X; ~ Ul0,1], we have E(t) =
E[sin(X;t)] = fol sin(xt) do = PCTOW) which is maximized on [0,1] in £ = 1 (by the hint
that E(t) is nondecreasing in [0, 1], i.e. sup;cjo 1) () = 1 — cos(1). This shows that

sup E,(t) 51— cos(1).

t€(0,1]

(e) (i) Note that EE,(t) = 2 S°" E[X!™] = E[X{ "] = E(t) since X; are iid, thus EP,(t) = 0.
We conclude (note that Var(Z) = Var(Z + ¢) for constants c¢) that

E“pn(t) - Pn(s)ﬂ = Var(P,(t) — P,(s)) = Var(% Z (X — X}“))

X, iid

1 n

- V. X1+t _ X1+s — V: X1+t _ X1+s

o 121 ar(X; i) ar(X; 1)

Var(z)=E[22]-E[Z]? " et
< E[lx™ — X7,

By a Taylor’s expansion of f(t) = ', we have f'(t) = log(x)x'* and f(t)— f(s) = (t—s)f'({)
with ¢ between s, t. Thus we have (note that for C' > 0 large enough, we have log(z)%r* < Cz°
for z > 1)

. R . teo,1]
E[|Pu(t) = Pal(s)”] < [t—sPE[log(X1)?[ X, P0] < [t = s]Ellog(X1)*X7] < CE[X7]-|s—t[*.
(i) By (i), we have for all € > 0 that for all s,¢ € [0, 1]:

E[|P(s) = Pu(t)]’] < CEIX7]

P(Pals) = Palt)] 2 ) < > =

‘S_tPa

i.e. (C1) is fulfilled with v = 1.
Now let k € N, 0 <t; < ... < tp < 1. By the multivariate central limit theorem, we have

~

Pﬂ(tl) n X'L'1+t1 - E[Xz'1+t1]

= z 5N, 2).
p Vi Ity _ L4ty
where ¥;; = Cov(X1 T4 X[ "4 = B[X7H99) — RIXTHE[X, Y] = Bt +t;+ 1) — E(t)E(t;).
Since Z has covariance function (s, t) = E[Z,Z;] = E(s+t+1)— E(s)E(t), then (Zy,, ..., Zy,) ~
N(0,%) (multivariate normal with mean 0 since Z is a centered Gaussian process) with the
same X as above. Thus we have shown that

(Bo(tr), s Pu(te)) B (Z4y, s 20,

i.e. (C2) holds. By the convergence principle, we have that P, 2 Zin (C10, 1], ]|+ []oo)-

(f) (i) By Donsker’s theorem, we have
1 1 D
P, = (Py(t))sepon == (%SM + =t — |t J)EMH) 2B

t€[0,1]

in (C[0,1], ] - |lso)- The mapping @ : (C[0,1], || - [|oc) = (R,]-]), ®(f) := fol |f(t)] dt is Lipschitz

continuous with constant 1 since

o(f) — a(g)| < / 1£(8)] — lg(o)]| dt < / £t —g(t)] At (x)

< S = gllss



By the continuous mapping theorem, we obtain
1
o(P,) 3 o(B) = / |B,| dt.
0

Furthermore, we have by (*),

9(7) = 0((F=Stt)con)] < 7= [ 100 = 1nt)) ey at
1 n k/n
< I [, ==y

by the weak law of large numbers. By Slutzky’s theorem, we have
k/n

n—1 n 1
1 1 1
— E |Sk] = — E / |Sk—1| dt = —/ | Sty | dt
3/ £ V= Jo1ym Vi Jy

1 D !
= @((%Stnﬂ)te[o’u) — (I)(B) :/0 |Bt’ dt
(ii) By Donsker’s theorem, we have
1 1 D
By = (Ba(t) )i = (ﬁSmtJ Rt - LntJ)€LntJ+1) - B

tel0,1]

The mapping @ : (C[0,1],] - [|s) = (R,|-]), ®(f) := inficpo,1) f(f) is continuous: Note that

inf f(t) > inf {f(t)—g(t)} + inf g(t)

t€(0,1] T telo,1] tel0,1]
= inf t) — inf t) < — inf t)—g(t); < t) —g(t
Jnf 00) =t f(0) < = inf, {f(®) = 9(0)} < sup |£(£) = (1)

Swapping the roles of f, g we obtain the same inequality but with different sign on the left hand
side, leading to

12(f) = 2(9)| < If — 9llo-

This shows that ® is even Lipschitz continuous with Lipschitz constant 1.
Application of the continuous mapping theorem yields

®(P,) 3 ®(B) = inf |Bl.

Furthermore, we have by the Lipschitz continuity of ®,

1 1
‘q)(Pn) - q)((ﬁsw)te[o,u)’ = Vi e [nt = )] - eyl
1

by the hint. By Slutzky’s theorem, we have

1 1 1
— min S, = inf — —

D .
\/ﬁ k=0,....,n te[0,1] \/ﬁSLntJ - (b((\/ﬁSLHtJ)tE[OJ]) — telf[%fl] Bt



which gives the result.
(iii) By Donsker’s theorem, we have

[nt]

= (PO = (7 6 =)+ ot = g =), 5 B
in (C[0,1], - ||e) since E[(g; —u)*] < oo and E(g; — ) = 0. The mapping @ : (C[0,1], ] - [|oe) —
C10,1], ]| - lloo), @(f) :={t — f(t) —tf(1)} is Lipschitz continuous with constant 2 since

[©(f) = (9)| < sup |f(t) = g(t)| + sup [t|-[f(1) = g(1)] < 2|If — glle-

te(0,1] tel0,1]

By the continuous mapping theorem, we obtain (from the lecture it is known that (B;—tB )scpo,1]
is a Brownian Bridge):

®(P,) 2 ®(B) = (B — tBy)icpoy) = B°.

Here, we have (the p’s cancel out!)

[nt] n
oP) = ( IZ +7<nt LntJ><qntJ+l—u>)—t~(%, (i - )

[nt]

- ( Zsz —In tJ)C‘LntHl) -t (%Z@)

— %(Stntj —t-5,) + %(nt — [nt])epny+1 = Ru(t),

which gives the desired convergence result.

—_



