Exam preparation sheet - Solutions part 2

0.2 Brownian motion and its properties

Solutions: (a) (i) We have to show that X satisfies the conditions of a Brownian motion:

- Since $t \mapsto B$ is continuous, the same holds for the continuous composition $t \mapsto B_{1-t}-B_{1}=$ X_{t},
- $X_{0}=B_{1-0}-B_{1}=0$,
- For $t \in[0,1]$, we have $\mathbb{E} X_{t}=\mathbb{E} B_{1-t}-\mathbb{E} B_{1}=0$ and for $s, t \in[0,1]$:

$$
\begin{aligned}
\operatorname{Cov}\left(X_{s}, X_{t}\right)=\operatorname{Cov}\left(B_{1-s}-B_{1}, B_{1-t}-B_{1}\right)= & \operatorname{Cov}\left(B_{1-s}, B_{1-t}\right)-\operatorname{Cov}\left(B_{1-s}, B_{1}\right) \\
& -\operatorname{Cov}\left(B_{1}, B_{1-t}\right)+\operatorname{Cov}\left(B_{1}, B_{1}\right) \\
= & (1-s) \wedge(1-t)-(1-s)-(1-t)+1 \\
= & s+t-(s \vee t) \\
= & s \wedge t,
\end{aligned}
$$

i.e. X has the same mean and covariance functions as a Brownian motion.

- Fix $0 \leq t_{1}<t_{2}<\ldots<t_{n}$. Since B is a Brownian motion, we have that $\left(B_{1}, B_{1-t_{1}}, \ldots, B_{1-t_{n}}\right)^{\prime} \sim$ $N(0, \Sigma)$ with some matrix Σ (we have already seen that the expectation is 0). Since

$$
\left(\begin{array}{c}
X_{t_{1}} \\
\vdots \\
X_{t_{n}}
\end{array}\right)=\underbrace{\left(\begin{array}{ccccc}
-1 & 1 & 0 & \ldots & 0 \\
-1 & 0 & 1 & \ddots & \vdots \\
\vdots & \vdots & \ddots & \ddots & 0 \\
-1 & 0 & \ldots & 0 & 1
\end{array}\right)}_{=: A} \cdot\left(\begin{array}{c}
B_{1} \\
B_{1-t_{1}} \\
\vdots \\
B_{1-t_{n}}
\end{array}\right) \sim N\left(0, A \Sigma A^{\prime}\right)
$$

thus $\left(X_{t_{1}}, \ldots, X_{t_{n}}\right)^{\prime}$ is multivariate Gaussian distributed.
(ii)

- Since $t \mapsto B$ is continuous, $t \mapsto B_{t_{0}}+Z\left(B_{t}-B_{t_{0}}\right)$ is continuous as a composition of continuous functions. This shows that $t \mapsto X_{t}$ is continuous in every point $t \in[0,1] \backslash\left\{t_{0}\right\}$. Since $B_{t_{0}}=B_{t_{0}}+Z\left(B_{t_{0}}-B_{t_{0}}\right)$, the two cases in the definition of X_{t} coincide for $t=t_{0}$, thus $t \mapsto X_{t}$ is continuous.
- Since $0<t_{0}, X_{0}=B_{0}=0$,
- (It is not necessary to prove the following. Everything also follows from the next point) For $t \in[0,1]$, we have

$$
\mathbb{E} X_{t}= \begin{cases}\mathbb{E} B_{t}=0, & t<t_{0} \\ \mathbb{E} B_{t_{0}}+\mathbb{E}\left[Z\left(B_{t}-B_{t_{0}}\right)\right]=\mathbb{E} B_{t_{0}}+\mathbb{E} Z \mathbb{E}\left(B_{t}-B_{t_{0}}\right)=0, & t \geq t_{0}\end{cases}
$$

since Z, B are independent and $\mathbb{E} B_{t_{0}}=0=\mathbb{E}\left(B_{t}-B_{t_{0}}\right)$.
For $s, t \in[0,1]$ we have three cases: For $s, t<t_{0}$, we have $\operatorname{Cov}\left(X_{t}, X_{s}\right)=\operatorname{Cov}\left(B_{t}, B_{s}\right)=$ $\min \{s, t\}$ since B is a Brownian motion.
For $s<t_{0} \leq t$, we have

$$
\begin{aligned}
\operatorname{Cov}\left(X_{t}, X_{s}\right) & =\operatorname{Cov}\left(B_{s}, B_{t_{0}}+Z\left(B_{t}-B_{t_{0}}\right)\right)=\operatorname{Cov}\left(B_{s}, B_{t_{0}}\right)+\operatorname{Cov}\left(B_{s}, Z\left(B_{t}-B_{t_{0}}\right)\right) \\
& =\min \left\{s, t_{0}\right\}+\underbrace{\mathbb{E}\left[Z B_{s}\left(B_{t}-B_{t_{0}}\right)\right]}_{=\mathbb{E}[Z] \cdot \mathbb{E}\left[B_{S}\left(B_{t}-B_{t_{0}}\right)=0\right.}=s=\min \{s, t\} .
\end{aligned}
$$

In the case $t_{0} \leq s, t$, we have

$$
\begin{aligned}
\operatorname{Cov}\left(X_{s}, X_{t}\right)= & \operatorname{Cov}\left(B_{t_{0}}+Z\left(B_{s}-B_{t_{0}}\right), B_{t_{0}}+Z\left(B_{t}-B_{t_{0}}\right)\right) \\
= & \operatorname{Cov}\left(B_{t_{0}}, B_{t_{0}}\right)+\underbrace{\operatorname{Cov}\left(B_{t_{0}}, Z\left(B_{t}-B_{t_{0}}\right)\right)+\operatorname{Cov}\left(B_{t_{0}}, Z\left(B_{s}-B_{t_{0}}\right)\right)}_{=0+0 \text { (like above) }} \\
& +\operatorname{Cov}\left(Z\left(B_{s}-B_{t_{0}}\right), Z\left(B_{t}-B_{t_{0}}\right)\right) \\
= & t_{0}+\mathbb{E}\left[Z^{2}\left(B_{s}-B_{t_{0}}\right)\left(B_{t}-B_{t_{0}}\right)\right] \\
= & t_{0}+\underbrace{\mathbb{E}\left[Z^{2}\right]}_{=1}\left(\mathbb{E}\left[B_{s} B_{t}\right]+\mathbb{E}\left[B_{t_{0}} B_{t_{0}}\right]-\mathbb{E}\left[B_{s} B_{t_{0}}\right]-\mathbb{E}\left[B_{t} B_{t_{0}}\right]\right) \\
= & t_{0}+\left(\min \{s, t\}+\min \left\{t_{0}, t_{0}\right\}-\min \left\{s, t_{0}\right\}-\min \left\{t, t_{0}\right\}\right) \\
= & t_{0}+\min \{s, t\}+t_{0}-t_{0}-t_{0}=\min \{s, t\} .
\end{aligned}
$$

i.e. X has the same mean and covariance functions as a Brownian motion.

- Fix $n \in \mathbb{N}$. Let $k \in\{1, \ldots, n\}$ be such that $0 \leq t_{1}<t_{2}<\ldots<t_{k}<t_{0} \leq t_{k+1}<\ldots<t_{n} \leq 1$.

Let $A_{1}, \ldots, A_{n} \in \mathcal{B}(\mathbb{R})$. Then we have, since $Z \in\{-1,1\}$ is independent of B,

$$
\begin{align*}
& \mathbb{P}\left(X_{t_{1}} \in A_{1}, \ldots, X_{t_{n}} \in A_{n}\right) \\
= & \mathbb{P}\left(\forall i \in\{1, \ldots, k\}: B_{t_{i}} \in A_{i}, \quad \forall i \in\{k+1, \ldots, n\}: B_{t_{0}}+Z\left(B_{t_{i}}-B_{t_{0}}\right) \in A_{i}\right) \\
= & \mathbb{P}\left(\forall i \in\{1, \ldots, k\}: B_{t_{i}} \in A_{i}, \quad \forall i \in\{k+1, \ldots, n\}: B_{t_{0}}+Z\left(B_{t_{i}}-B_{t_{0}}\right) \in A_{i}, Z=1\right) \\
& \quad+\mathbb{P}\left(\forall i \in\{1, \ldots, k\}: B_{t_{i}} \in A_{i}, \quad \forall i \in\{k+1, \ldots, n\}: B_{t_{0}}+Z\left(B_{t_{i}}-B_{t_{0}}\right) \in A_{i}, Z=-1\right) \\
= & \mathbb{P}\left(\forall i \in\{1, \ldots, n\}: B_{t_{i}} \in A_{i}\right) \mathbb{P}(Z=1) \\
& \quad+\mathbb{P}\left(\forall i \in\{1, \ldots, k\}: B_{t_{i}} \in A_{i}, \quad \forall i \in\{k+1, \ldots, n\}: 2 B_{t_{0}}-B_{t_{i}} \in A_{i}\right) \mathbb{P}(Z=-1) \quad(*) . \tag{*}
\end{align*}
$$

Note that $\left(B_{t_{1}}, \ldots, B_{t_{n}}\right) \sim N(0, \Sigma)$ with $\Sigma_{i j}=\min \left\{t_{i}, t_{j}\right\}$ since B is a centered Gaussian process with covariance function $\mathbb{E} B_{s} B_{t}=\min \{s, t\}$. We also have

$$
\left(\begin{array}{c}
B_{t_{1}} \\
\vdots \\
B_{t_{k}} \\
2 B_{t_{0}}-B_{t_{k+1}} \\
\vdots \\
2 B_{t_{0}}-B_{t_{n}}
\end{array}\right)=\left(\begin{array}{ccccccccc}
1 & 0 & \ldots & 0 & 0 & 0 & \ldots & \ldots & 0 \\
0 & \ddots & \ddots & \vdots & 0 & \vdots & & & \vdots \\
\vdots & \ddots & \ddots & 0 & 0 & \vdots & & & \vdots \\
0 & \ldots & 0 & 1 & 0 & 0 & \ldots & \ldots & 0 \\
0 & \ldots & \ldots & 0 & 2 & -1 & 0 & \ldots & 0 \\
\vdots & & & \vdots & 2 & 0 & \ddots & \ddots & \vdots \\
\vdots & & & \vdots & 2 & \vdots & \ddots & \ddots & 0 \\
0 & \ldots & \ldots & 0 & 2 & 0 & \ldots & 0 & -1
\end{array}\right) \cdot\left(\begin{array}{c}
B_{t_{1}} \\
\vdots \\
B_{t_{k}} \\
B_{t_{0}} \\
B_{t_{k+1}} \\
\vdots \\
B_{t_{n}}
\end{array}\right) \sim N(0, \Sigma)
$$

with the same Σ as above since for $i \leq k, j \geq k+1$ we have

$$
\operatorname{Cov}\left(B_{t_{i}}, 2 B_{t_{0}}-B_{t_{j}}\right)=2 \operatorname{Cov}\left(B_{t_{i}}, B_{t_{0}}\right)-\operatorname{Cov}\left(B_{t_{i}}, B_{t_{j}}\right)=2 t_{i}-t_{i}=t_{i}=\min \left\{t_{i}, t_{j}\right\}
$$

and for $i, j \geq k+1$:

$$
\begin{aligned}
& \operatorname{Cov}\left(2 B_{t_{0}}-B_{t_{i}}, 2 B_{t_{0}}-B_{t_{j}}\right) \\
= & 4 \operatorname{Cov}\left(B_{t_{0}}, B_{t_{0}}\right)-2 \operatorname{Cov}\left(B_{t_{0}}, B_{t_{i}}\right)-2 \operatorname{Cov}\left(B_{t_{0}}, B_{t_{j}}\right)+\operatorname{Cov}\left(B_{t_{i}}, B_{t_{j}}\right) \\
= & 4 t_{0}-2 t_{0}-2 t_{0}+\min \left\{t_{i}, t_{j}\right\}=\min \left\{t_{i}, t_{j}\right\} .
\end{aligned}
$$

This shows that

$$
\begin{aligned}
& \mathbb{P}\left(X_{t_{1}} \in A_{1}, \ldots, X_{t_{n}} \in A_{n}\right) \\
\stackrel{*}{=} & \frac{1}{2}\left(\mathbb{P}\left(\forall i \in\{1, \ldots, n\}: B_{t_{i}} \in A_{i}\right)\right. \\
& \left.+\mathbb{P}\left(\forall i \in\{1, \ldots, k\}: B_{t_{i}} \in A_{i}, \quad \forall i \in\{k+1, \ldots, n\}: 2 B_{t_{0}}-B_{t_{i}} \in A_{i}\right)\right) \\
= & \frac{1}{2}\left[\mathbb{P}\left(N(0, \Sigma) \in A_{1} \times \ldots \times A_{n}\right)+\mathbb{P}\left(N(0, \Sigma) \in A_{1} \times \ldots \times A_{n}\right)\right] \\
= & \mathbb{P}\left(N(0, \Sigma) \in A_{1} \times \ldots \times A_{n}\right)
\end{aligned}
$$

Since $\left\{A_{1} \times \ldots \times A_{n}: A_{i} \in \mathcal{B}(\mathbb{R})\right.$ for $\left.i=1, \ldots, n\right\}$ is a generating system of $\mathcal{B}\left(\mathbb{R}^{n}\right)$, we have shown that $\left(X_{t_{1}}, \ldots, X_{t_{n}}\right) \sim N(0, \Sigma)$, i.e. $\left(X_{t_{1}}, \ldots, X_{t_{n}}\right)$ has the same distribution as $\left(B_{t_{1}}, \ldots, B_{t_{n}}\right)$.
(iii) We have to show that $\left(X_{t}\right)_{t \geq 0}$ satisfies the properties of a standard Brownian motion. Here, we use the original definition with independent increments.
(1) Since $\left(B_{t}\right),\left(B_{t}^{\prime}\right)$ are Brownian motions, it holds that $B_{0}=B_{0}^{\prime}=0$. Thus $X_{0}=a \cdot B_{0}+b$. $B_{0}^{\prime}=0+0=0$.
(2) Since $\left(B_{t}\right),\left(B_{t}^{\prime}\right)$ are Brownian motions, $t \mapsto B_{t}$ and $t \mapsto B_{t}^{\prime}$ are continuous. Since ' + ' is a continuous operation, $t \mapsto X_{t}=B_{t}+B_{t}^{\prime}$ is continuous as well.
(3) Let $n \in \mathbb{N}, 0 \leq t_{1}<\ldots<t_{n}$. Since $\left(B_{t}\right),\left(B_{t}^{\prime}\right)$ are Brownian motions, $\left(B_{t_{i}}-B_{t_{i-1}}\right)_{i=1, \ldots, n}$ are independent and $\left(B_{t_{i}}^{\prime}-B_{t_{i-1}}^{\prime}\right)_{i=1, \ldots, n}$ are independent. Since $\left(B_{t}\right),\left(B_{t}^{\prime}\right)$ are independent, we conclude that the $2 n$ random variables are jointly independent:

$$
\begin{aligned}
& \mathbb{P}^{\left(B_{t_{i}}-B_{t_{i-1}}\right)_{i=1, \ldots, n,\left(B_{t_{i}}^{\prime}-B_{t_{i-1}}^{\prime}\right)_{i=1, \ldots, n}}}=\mathbb{P}^{\left(B_{t_{i}}-B_{t_{i-1}}\right)_{i=1, \ldots, n}} \otimes \mathbb{P}^{\left(B_{t_{i}}^{\prime}-B_{t_{i-1}}^{\prime}\right)_{i=1, \ldots, n}} \\
&=\left(\bigotimes_{i=1}^{n} \mathbb{P}^{B_{t_{i}}-B_{t_{i-1}}}\right) \otimes\left(\bigotimes_{i=1}^{n} \mathbb{P}^{B_{t_{i}}^{\prime}-B_{t_{i-1}}^{\prime}}\right) .
\end{aligned}
$$

Thus $\left(X_{t_{i}}-X_{t_{i-1}}\right)_{i=1, \ldots, n}=\left(\left(B_{t_{i}}^{\prime}-B_{t_{t-1}}^{\prime}\right)+\left(B_{t_{i}}-B_{t_{t-1}}\right)\right)_{i=1, \ldots, n}$ are independent as combinations of different independent random variables.
(4) Let $s \leq t$. Since $\left(B_{t}\right),\left(B_{t}^{\prime}\right)$ are Brownian motions, we have $B_{t}-B_{s} \sim N(0, t-s)$ and $B_{t}^{\prime}-B_{s}^{\prime} \sim N(0, t-s)$. Since $\left(B_{t}-B_{s}\right),\left(B_{t}^{\prime}-B_{s}^{\prime}\right)$ are independent, we conclude that

$$
X_{t}-X_{s}=a \cdot\left(B_{t}-B_{s}\right)+b \cdot\left(B_{t}^{\prime}-B_{s}^{\prime}\right) \sim N\left(0, a^{2}(t-s)+b^{2}(t-s)\right) \stackrel{a^{2}+b^{2}=1}{=} N(0, t-s) .
$$

(iv) Since $r(\cdot)$ is continuous and strictly increasing with $r(0)=0$, we have that the inverse $r^{-1}(\cdot)$ is continuous and strictly increasing with $r^{-1}(0)$. We now show that X satisfies the characterizing conditions of a Brownian motion:

- $X_{0}=\frac{W_{r-1}(0)}{v\left(r^{-1}(0)\right)}=\frac{W_{0}}{v(0)}=0$ since $W_{0}=0$.
- Since $v \in C[0, \infty)$ and r^{-1} is continuous and W is continuous, we have that $t \mapsto \frac{W_{r-1}(t)}{v\left(r^{-1}(t)\right)}=$ X_{t} is continuous as a composition of continuous functions.
- Since W is a centered Gaussian process with covariance function $\gamma(s, t)=u(s) v(t)$, it holds that $\mathbb{E} W_{t}=0$ and $\operatorname{Cov}\left(W_{s}, W_{t}\right)=u(s) v(t)$ for all $0 \leq s \leq t$. We conclude that for all $t \geq 0$,

$$
\mathbb{E}\left[X_{t}\right]=\frac{\mathbb{E} W_{r^{-1}(t)}}{v\left(r^{-1}(t)\right)}=0,
$$

and for all $0 \leq s \leq t$ (note that $r^{-1}(s) \leq r^{-1}(t)$ since r^{-1} is nondecreasing)

$$
\begin{aligned}
\operatorname{Cov}\left(X_{t}, X_{s}\right) & =\frac{1}{v\left(r^{-1}(t)\right) v\left(r^{-1}(s)\right)} \operatorname{Cov}\left(W_{r^{-1}(t)}, W_{r^{-1}(s)}\right) \\
& =\frac{1}{v\left(r^{-1}(t)\right) v\left(r^{-1}(s)\right)} u\left(r^{-1}(s)\right) v\left(r^{-1}(t)\right) \\
& =\frac{u\left(r^{-1}(s)\right)}{v\left(r^{-1}(s)\right)}=r\left(r^{-1}(s)\right)=s=\min \{s, t\}
\end{aligned}
$$

which shows that X has the covariance function of a Brownian motion.

- Let $n \in \mathbb{N}, 0 \leq t_{0}<t_{1}<\ldots<t_{n} \leq 1$. Since W is a centered Gaussian process, we have that $\left(W_{r^{-1}\left(t_{1}\right)}, \ldots, W_{r^{-1}\left(t_{n}\right)}\right)^{\prime} \sim N(0, \Sigma)$ with some $\Sigma \in \mathbb{R}^{n \times n}$. We conclude that

$$
\left(\begin{array}{c}
X_{t_{1}} \\
\vdots \\
X_{t_{n}}
\end{array}\right)=\underbrace{\left(\begin{array}{cccc}
\frac{1}{v\left(r^{-1}\left(t_{1}\right)\right)} & 0 & \cdots & 0 \\
0 & \ddots & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & \frac{1}{v\left(r^{-1}\left(t_{n}\right)\right)}
\end{array}\right)}_{=: A} \cdot\left(\begin{array}{c}
W_{r^{-1}\left(t_{1}\right)} \\
\vdots \\
W_{r^{-1}\left(t_{n}\right)}
\end{array}\right) \sim N\left(0, A \Sigma A^{\prime}\right)
$$

which shows that X is a (centered) Gaussian process.
(b) We have to show that X satisfies the characterizing conditions of a Brownian Bridge:

- Since $t \mapsto B$ is continuous, the same holds for the continuous composition $t \mapsto(1-t) B_{\frac{t}{1-t}}$ for $t \in[0,1)$. For $t=1$, we have

$$
\lim _{t \rightarrow 1} X_{t}=\lim _{t \rightarrow 1} \underbrace{}_{\rightarrow 1} t\left(^{\frac{1-t}{t}}\right) \cdot B_{\frac{1}{\left(\frac{1-t)}{t}\right)}} \stackrel{s:=\frac{1-t}{=}}{=} \lim _{s \rightarrow 0} s \cdot B_{1 / s}=0
$$

since $W_{s}:=s B_{1 / s}$ is a Brownian motion (time reverse) and thus continuous in 0.

- $X_{0}=(1-0) \cdot B_{0}=0$,
- For $t \in[0,1)$, we have $\mathbb{E} X_{t}=(1-t) \mathbb{E} B_{\frac{t}{1-t}}=0$ (trivially $\left.\mathbb{E} X_{1}=0\right)$. Note that $t \mapsto \frac{t}{1-t}$ is increasing for $t \in[0,1)$. Thus we have for $s \leq t \in[0,1)$:

$$
\begin{aligned}
\operatorname{Cov}\left(X_{s}, X_{t}\right) & =\operatorname{Cov}\left((1-t) B_{\frac{t}{1-t}},(1-s) B_{\frac{s}{1-s}}\right)=(1-t)(1-s) \cdot \frac{s}{1-s} \\
& =s(1-t)=\min \{s, t\}-s t
\end{aligned}
$$

i.e. X has the same mean and covariance functions as a Brownian motion (the case $s=1$ or $t=1$ is trivial since $X_{1}=0$ and thus the covariance is 0).

- Fix $0 \leq t_{1}<t_{2}<\ldots<t_{n}$. Since B is a Brownian motion, we have that $\left(X_{t_{1}}, \ldots, X_{t_{n}}\right)^{\prime}=$ $\left(B_{\frac{t_{1}}{1-t_{1}}}^{1}, \ldots, B_{\frac{t_{n}}{1-t_{n}}}\right)^{\prime} \sim N(0, \Sigma)$ with some matrix Σ (we have already seen that the expectation is 0), thus ($\left.X_{t_{1}}, \ldots, X_{t_{n}}\right)^{\prime}$ is multivariate Gaussian distributed.
(c) (i) We have to show the three properties of a martingale: We have for all $t \geq 0$:
- Since $B_{t} \in \mathcal{F}_{t}$, we have that $X_{t}=B_{t}^{2}-t \in \mathcal{F}_{t}$ as a composition of measurable functions.
- $\mathbb{E}\left|X_{t}\right| \leq \mathbb{E}\left[B_{t}^{2}\right]+t=t+t=2 t<\infty\left(\right.$ since $\left.B_{t} \sim N(0, t)\right)$.
- We have that $B_{t}-B_{s} \sim N(0, t-s)$ is independent of \mathcal{F}_{s}, and B_{s} is \mathcal{F}_{s}-measurable. Thus

$$
\begin{aligned}
\mathbb{E}\left[X_{t} \mid \mathcal{F}_{s}\right]=\mathbb{E}\left[B_{t}^{2}-t \mid \mathcal{F}_{s}\right] & =\mathbb{E}\left[\left(B_{t}-B_{s}\right)^{2}+2 B_{t} B_{s}-B_{s}^{2}-t \mid \mathcal{F}_{s}\right] \\
& =\mathbb{E}\left[\left(B_{t}-B_{s}\right)^{2}+2\left(B_{t}-B_{s}\right) B_{s}+B_{s}^{2}-t \mid \mathcal{F}_{s}\right] \\
& =\underbrace{\mathbb{E}\left[\left(B_{t}-B_{s}\right)^{2}\right]}_{=t-s}+2 B_{s} \underbrace{\mathbb{E}\left[B_{t}-B_{s}\right]}_{=0}+B_{s}^{2}-t \\
& =B_{s}^{2}-s=X_{s} .
\end{aligned}
$$

(ii) We have to show the three properties of a martingale: We have for all $t \geq 0$:

- By continuity, we have $\int_{0}^{t} B_{s} \mathrm{~d} s=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} B_{t \cdot \frac{k}{n}}$. Since $t \frac{k}{n} \leq t, B_{t \cdot \frac{k}{n}} \in \mathcal{F}_{t}$. Thus $\frac{1}{n} \sum_{k=1}^{n} B_{t \cdot \frac{k}{n}} \in \mathcal{F}_{t}$ for all $n \in \mathbb{N}$ which implies that $\int_{0}^{t} B_{s} \mathrm{~d} s \in \mathcal{F}_{t}$. We conclude that $X_{t}=t B_{t}-\int_{0}^{t} B_{s} \mathrm{~d} s \in \mathcal{F}_{t}$ as a measurable composition of \mathcal{F}_{t}-measurable functions.
- With Fubini's theorem, we have $\mathbb{E}\left|X_{t}\right| \leq t \mathbb{E}\left|B_{t}\right|+\int_{0}^{t} \mathbb{E}\left|B_{s}\right| \mathrm{d} s \leq t \mathbb{E}\left[B_{t}^{2}\right]^{1 / 2}+\int_{0}^{t} \mathbb{E}\left[B_{s}^{2}\right]^{1 / 2} \mathrm{~d} s \leq$ $t^{3 / 2}+\int_{0}^{t} s^{1 / 2} \mathrm{~d} s<\infty\left(\right.$ since $B_{s} \sim N(0, s)$ for $\left.0 \leq s \leq t\right)$.
- We have

$$
\mathbb{E}\left[X_{t} \mid \mathcal{F}_{s}\right]=t \mathbb{E}\left[B_{t} \mid \mathcal{F}_{s}\right]-\mathbb{E}\left[\int_{s}^{t} B_{u}-B_{s} \mathrm{~d} u+B_{s}(t-s)+\int_{0}^{s} B_{u} \mathrm{~d} u \mid \mathcal{F}_{s}\right] .
$$

By the first point, we have that $\int_{0}^{s} B_{u} \mathrm{~d} u \in \mathcal{F}_{s}$. By Fubini's theorem (it holds that

$$
\mathbb{E} \int_{s}^{t}\left|B_{u}-B_{s}\right| \mathrm{d} u \leq \int_{s}^{t} \underbrace{\mathbb{E}\left|B_{u}-B_{s}\right|}_{\leq \mathbb{E}\left[\left(B_{u}-B_{s}\right)^{2}\right]^{1 / 2}=(u-s)^{1 / 2}} \mathrm{~d} u \leq \int_{s}^{t}(u-s)^{1 / 2} \mathrm{~d} u<\infty
$$

) we have $\mathbb{E}\left[\int_{s}^{t} B_{u}-B_{s} \mathrm{~d} u \mid \mathcal{F}_{s}\right]=\int_{s}^{t} \mathbb{E}\left[B_{u}-B_{s} \mid \mathcal{F}_{s}\right] \mathrm{d} u=\int_{s}^{t} \mathbb{E}\left[B_{u}-B_{s}\right] \mathrm{d} u=0$. We conclude that

$$
\mathbb{E}\left[X_{t} \mid \mathcal{F}_{s}\right]=t \underbrace{\left(\mathbb{E}\left[B_{t}-B_{s} \mid \mathcal{F}_{s}\right]\right.}_{=\mathbb{E}\left[B_{t}-B_{s}\right]=0}+B_{s})-B_{s}(t-s)-\int_{0}^{s} B_{u} \mathrm{~d} u=s B_{s}-\int_{0}^{s} B_{u} \mathrm{~d} u=X_{s} .
$$

(iii) We have to show the three properties of a martingale: For all $t \geq 0$,

- $\mathbb{E}\left|X_{t}\right|=\exp \left(-\frac{\lambda^{2}}{2} t\right) \cdot \mathbb{E} \exp \left(\lambda B_{t}\right) \stackrel{\text { hint }}{=} \exp \left(-\frac{\lambda^{2}}{2} t\right) \cdot \exp \left(\frac{1}{2} t \lambda^{2}\right)=1<\infty$ (note that $\lambda B_{t} \sim$ $\left.N\left(0, t \lambda^{2}\right)\right)$.
- $X_{t} \in \mathcal{F}_{t}$ since $B_{t} \in \mathcal{F}_{t}$ (so X_{t} is a composition of measurable functions).
- For $0 \leq s \leq t$, we know that $\exp \left(\sigma\left(B_{t}-B_{s}\right)\right)$ is independent of \mathcal{F}_{s} (see Exercise Sheet 4, Task 16). Therefore,

$$
\begin{aligned}
\mathbb{E}\left[X_{t} \mid \mathcal{F}_{s}\right] & =S_{0} \exp \left(-\frac{\lambda^{2}}{2} t\right) \cdot \mathbb{E}\left[\exp \left(\lambda\left(B_{t}-B_{s}\right)\right) \cdot \exp \left(\lambda B_{s}\right) \mid \mathcal{F}_{s}\right] \\
& =S_{0} \exp \left(-\frac{\lambda^{2}}{2} t\right) \cdot \exp \left(\lambda B_{s}\right) \cdot \mathbb{E}\left[\exp \left(\lambda\left(B_{t}-B_{s}\right)\right)\right] \\
& \stackrel{\text { hint }}{=} S_{0} \exp \left(-\frac{\lambda^{2}}{2} t\right) \cdot \exp \left(\lambda B_{s}\right) \cdot \exp \left(\frac{1}{2} \lambda^{2}(t-s)\right) \\
& =S_{0} \exp \left(\lambda B_{s}-\frac{\lambda^{2}}{2} s\right)=X_{s} .
\end{aligned}
$$

(d) (i) First possibility (Elementary argumentation): We use the generating system $\mathcal{E}:=$ $\{(-\infty, x]: x \in \mathbb{R}\}$ of $\mathcal{B}(\mathbb{R})$. For arbitrary $(-\infty, x] \in \mathcal{E}$, we have

$$
\begin{aligned}
\Phi^{-1}(-\infty, x] & =\left\{f \in C[0,1]: \max _{0 \leq s \leq T} f(s) \leq x\right\}=\{f \in C[0,1]: \forall s \in[0, T]: f(s) \leq x\} \\
& \stackrel{f \text { cont. }}{=}\{f \in C[0,1]: \forall s \in[0, T] \cap \mathbb{Q}: f(s) \leq x\} \\
& =\bigcap_{s \in[0, T] \cap \mathbb{Q}} \underbrace{\{f \in C[0,1]: f(s) \leq x\}}_{\pi_{t}^{-1}(-\infty, x]} \in \mathcal{B}(C[0,1])
\end{aligned}
$$

as a countable intersection of elements of $\mathcal{B}(C[0,1])$ (recall that $\mathcal{B}(C[0,1])$ is generated by the projections $\left.\pi_{t}: C[0,1] \rightarrow \mathbb{R}, f \mapsto f(t)\right)$.
Second possibility (continuity): Recall that $\mathcal{B}(C[0,1])$ is generated by the open sets in $(C[0,1], \|$. $\left.\|_{\infty}\right)$. Recall that $\mathcal{E}:=\{U \subset \mathbb{R}: U$ open $\}$ is a generating system of $\mathcal{B}(\mathbb{R})$. If we show that Φ is continuous, then it follows that for each $U \in \mathcal{E}, \Phi^{-1}(U)$ is open in $\left(C[0,1],\|\cdot\|_{\infty}\right)$ and thus $\Phi^{-1}(U) \in \mathcal{B}(C[0,1])$ which shows measurability of Φ.
It remains to show that Φ is continuous. Note that

$$
|\Phi(f)-\Phi(g)|=\left|\max _{0 \leq s \leq T} f(s)-\max _{0 \leq s \leq T} g(s)\right| \stackrel{(* * *)}{\leq} \max _{0 \leq s \leq T}|f(s)-g(s)|=\|f-g\|_{\infty}
$$

i.e. Φ is Lipschitz continuous. [Note that $f=f-g+g$ implies

$$
\begin{aligned}
& \max _{0 \leq s \leq T} f(s) \leq \max _{0 \leq s \leq T}(f(s)-g(s))+\max _{0 \leq s \leq T} g(s) \\
\Rightarrow & \max _{0 \leq s \leq T} f(s)-\max _{0 \leq s \leq T} g(s) \leq \max _{0 \leq s \leq T}(f(s)-g(s)) \leq \max _{0 \leq s \leq T}|f(s)-g(s)|
\end{aligned}
$$

which leads to $\left(^{\left({ }^{* *}\right)}\right.$ if we swap the roles of f, g and use both obtained inequalities].
(ii) By the lecture it is known that $W=\left(W_{t}\right)_{t \geq 0}$ with $W_{t}:=\sqrt{T} B_{t / T}$ is again a Brownian motion (scaling invariance). By (i) we conclude that

$$
M_{T}=\Phi(B) \stackrel{d}{=} \Phi(W)=\max _{0 \leq s \leq T} W_{s}=\sqrt{T} \max _{0 \leq s \leq T} B_{s / T}=\sqrt{T} \max _{0 \leq s \leq 1} B_{s}=\sqrt{T} M_{1}
$$

(iii) By the lecture it is known that $W=\left(W_{t}\right)_{t \geq 0}$ with $W_{t}:=-B_{t}$ is again a Brownian motion (symmetry w.r.t. the x-axis). By (i) we conclude that

$$
M_{T}=\Phi(B) \stackrel{d}{=} \Phi(W)=\max _{0 \leq s \leq T} W_{s}=\max _{0 \leq s \leq T}\left(-B_{s}\right)=-\min _{0 \leq s \leq T} B_{s}=-m_{T}
$$

Thus $\mathbb{E} M_{T}=-\mathbb{E} m_{T}$, or equivalently $\mathbb{E}\left[M_{T}+m_{T}\right]=0$.
(e) (i) We use the generating system $\mathcal{E}:=\{(x, 1]: x \in[0,1]\} \cup\{\infty\}$ of $\mathcal{B}([0,1] \cup\{\infty\})$. For arbitrary $(x, 1] \in \mathcal{E}$, we have

$$
\begin{aligned}
\Phi^{-1}(x, 1] & = \\
= & \{f \in C[0,1]: \inf \{t \in[0,1]: f(t)<-1\}>x\} \\
& \{f \in C[0,1]: \forall s \in[0, x]: f(s) \geq-1\} \\
& \stackrel{f \text { cont. }}{=} \\
= & \{f \in C[0,1]: \forall s \in[0, x] \cap \mathbb{Q}: f(s) \geq-1\} \\
& \bigcap_{s \in[0, x] \cap \mathbb{Q}} \underbrace{\{f \in C[0,1]: f(s) \geq-1\}}_{\pi_{t}^{-1}[-1, \infty) \in \mathcal{B}(C[0,1])} \in \mathcal{B}(C[0,1]) .
\end{aligned}
$$

For $\{\infty\} \in \mathcal{E}$, we have $\Phi^{-1}\{\infty\}=\{f \in C[0,1]: \forall s \in[0,1]: f(s) \geq-1\} \in \mathcal{B}(C[0,1])$ as above.
(ii) By the lecture, it is known that $B \stackrel{d}{=} W:=\left(-B_{t}\right)_{t \geq 0}$. We obtain that

$$
\tau_{1}=\Phi(B) \stackrel{d}{=} \Phi(W)=\inf \left\{t \geq 0:-B_{t}<-1\right\}=\inf \left\{t \geq 0: B_{t}>1\right\}=\tau_{2} .
$$

(f) (i) Note that if $f \in C[0,1]$, then $\left[\forall s, t \in[0,1] \cap \mathbb{Q}:|f(s)-f(t)| \leq C|s-t|^{\alpha}\right]$ already implies the same statement for all $s, t \in[0,1]$. To prove this, let $s, t \in[0,1]$ be arbitrary and $\left(s_{n}\right),\left(t_{n}\right) \subset \mathbb{Q}$ sequences with $s_{n} \rightarrow s, t_{n} \rightarrow t$. Then we have $\left|f\left(s_{n}\right)-f\left(t_{n}\right)\right| \leq C\left|s_{n}-t_{n}\right|^{\alpha}$ for all $n \in \mathbb{N}$. Taking $\lim _{n \rightarrow \infty}$ on both sides and using the continuity of f, we obtain $|f(s)-f(t)| \leq$ $C|s-t|^{\alpha}$. (*)
Now, note that

$$
\begin{aligned}
M & =\left\{\omega \in \Omega: \forall s, t:\left|B_{s}(\omega)-B_{t}(\omega)\right| \leq C|s-t|^{\alpha}\right\} \\
& \stackrel{(*)}{=}\left\{\omega \in \Omega: \forall s, t \in \mathbb{Q} \cap[0,1]:\left|B_{s}(\omega)-B_{t}(\omega)\right| \leq C|s-t|^{\alpha}\right\} \\
& =\bigcap_{s, t \in \mathbb{Q} \cap[0,1]} \underbrace{\left\{\omega \in \Omega:\left|B_{s}(\omega)-B_{t}(\omega)\right| \leq C|s-t|^{\alpha}\right\}}_{\in \mathcal{A}} \in \mathcal{A} .
\end{aligned}
$$

(More precisely (but not necessary to point this out) we have $\left\{\omega \in \Omega:\left|B_{s}(\omega)-B_{t}(\omega)\right| \leq\right.$ $\left.C|s-t|^{\alpha}\right\}=\left(B_{s}, B_{t}\right)^{-1}(N)$ with $N:=\left\{(y, z) \in \mathbb{R}^{2}:|y-z| \leq C|s-t|^{\alpha}\right\}$. Note that $N \in \mathcal{B}(\mathbb{R})^{2}$. The process $\left(B_{s}, B_{t}\right)$ is $\mathcal{A}-\mathcal{B}(\mathbb{R})^{2}$-measurable since B_{s}, B_{t} are $\mathcal{A}-\mathcal{B}(\mathbb{R})$-measurable (result from Probability theory 1), thus $\left.\left(B_{s}, B_{t}\right)^{-1}(N) \in \mathcal{A}\right)$.
(ii) Since $B\left(\frac{k}{n}\right)-B\left(\frac{k-1}{n}\right) \sim N\left(0, \frac{1}{n}\right), k=1, \ldots, n$ are i.i.d., we obtain with some $Z \sim N(0,1)$:

$$
\mathbb{P}\left(\forall k \in\{1, \ldots, n\}:\left|B\left(\frac{k}{n}\right)-B\left(\frac{k-1}{n}\right)\right| \leq C n^{-\alpha}\right)=\mathbb{P}\left(\frac{1}{\sqrt{n}}|Z| \leq C n^{-\alpha}\right)^{n}=\mathbb{P}\left(|Z| \leq C n^{\frac{1}{2}-\alpha}\right)^{n}
$$

For n large enough, $C n^{\frac{1}{2}-\alpha} \leq 1$. In this case, the above term is smaller than $\mathbb{P}(|Z| \leq 1)^{n} \rightarrow 0$ $(n \rightarrow \infty)$ since $\mathbb{P}(|Z| \leq 1)<1$.
(iii) If B is Hoelder continuous w.r.t. (α, C), then it would hold for all $n \in \mathbb{N}$ and for $k=1, \ldots, n$ that $\left|B\left(\frac{k}{n}\right)-B\left(\frac{k-1}{n}\right)\right| \leq C\left|\frac{k}{n}-\frac{k-1}{n}\right|^{\alpha}=C n^{-\alpha}$. Thus for all $n \in \mathbb{N}$,

$$
\mathbb{P}(M) \leq \mathbb{P}\left(\forall k \in\{1, \ldots, n\}:\left|B\left(\frac{k}{n}\right)-B\left(\frac{k-1}{n}\right)\right| \leq C n^{-\alpha}\right) \stackrel{(b)}{=} \rightarrow 0
$$

This shows that $\mathbb{P}(M)=0$, i.e. almost surely B is not Hoelder continuous w.r.t. (α, C).
(g) (i) Note that if it holds that $f(t) \leq B_{t} \leq g(t)$ for all $t \in \mathbb{Q} \cap[0,1]$, then the same holds also for $t \in[0,1]$. Proof: For $t \in[0,1]$ we can find a sequence $t_{n} \rightarrow t$ with $\left(t_{n}\right) \subset \mathbb{Q} \cap[0,1]$. By assumption, $f\left(t_{n}\right) \leq B_{t_{n}} \leq g\left(t_{n}\right)$ for all $n \in \mathbb{N}$. By $n \rightarrow \infty, f(t) \leq B_{t} \leq g(t)\left(^{*}\right)$.

We have

$$
\begin{aligned}
M & =\left\{\omega \in \Omega: \forall t \in[0,1]: f(t) \leq B_{t}(\omega) \leq g(t)\right\} \\
& \stackrel{(*)}{=}\left\{\omega \in \Omega: \forall t \in \mathbb{Q} \cap[0,1]: f(t) \leq B_{t}(\omega) \leq g(t)\right\} \\
& =\bigcap_{t \in \mathbb{Q} \cap[0,1]} \underbrace{}_{\in \mathcal{A}}\left\{\omega \in \Omega: f(t) \leq B_{t}(\omega) \leq g(t)\right\}
\end{aligned} \mathcal{A} . \quad .
$$

(ii) It holds that (the inequalities are due to the fact that the conditions in the $\mathbb{P}(\cdot)$ imply the
conditions in the $\mathbb{P}(\cdot)$ in the next line):

$$
\begin{aligned}
& \mathbb{P}\left(\forall k \in\{0, \ldots, n\}: \frac{k}{n^{2}} \leq B_{\frac{k}{n^{2}}} \leq 2 \frac{k}{n^{2}}\right) \\
\leq & \mathbb{P}\left(\forall k \in\{0, \ldots, n-1\}: \frac{k+1}{n^{2}}-\frac{2 k}{n^{2}} \leq B_{\frac{k+1}{n^{2}}}-B_{\frac{k}{n^{2}}} \leq \frac{2(k+1)}{n^{2}}-\frac{k}{n^{2}}\right) \\
= & \mathbb{P}(\forall k \in\{0, \ldots, n-1\}: \underbrace{\frac{-k+1}{n^{2}}}_{-\frac{1}{n} \leq \ldots} \leq \underbrace{}_{{\underset{\sim}{\sim}}_{i_{N\left(0, \frac{1}{n^{2}}\right.}^{n^{2}}}^{B_{\frac{k+1}{}}-B_{\frac{k}{n^{2}}}} \leq \underbrace{\frac{k+2}{n^{2}}}_{\cdots \leq \frac{n+1}{n^{2}} \leq \frac{2}{n}})} \\
\leq & \mathbb{P}\left(-\frac{1}{n} \leq N\left(0, \frac{1}{n^{2}}\right) \leq \frac{2}{n}\right)^{n} \\
\leq & \mathbb{P}(-1 \leq N(0,1) \leq 2)^{n}=a^{n} \rightarrow 0,
\end{aligned}
$$

since $a:=\mathbb{P}(-1 \leq N(0,1) \leq 2)<1$.
(iii) If B would be surrounded by f and g, then for all $n \in \mathbb{N}$ it would hold that $\forall k \in\{0, \ldots, n\}$: $\frac{k}{n^{2}} \leq B_{\frac{k}{n^{2}}} \leq 2 \frac{k}{n^{2}}$. Thus by (b),

$$
\mathbb{P}(M) \leq \mathbb{P}\left(\forall k \in\{0, \ldots, n\}: \frac{k}{n^{2}} \leq B_{\frac{k}{n^{2}}} \leq 2 \frac{k}{n^{2}}\right) \rightarrow 0
$$

This shows that $\mathbb{P}(M)=0$, i.e. almost surely B is not surrounded by f and g.

