Exam preparation sheet - Solutions part 2

0.2 Brownian motion and its properties

Solutions: (a) (i) We have to show that X satisfies the conditions of a Brownian motion:

e Sincet — B is continuous, the same holds for the continuous composition t — By_;—B; =
Xt7

o onBl_Q—Ble,
e For ¢t € [0,1], we have EX; = EB;_; — EB; = 0 and for s,¢ € [0, 1]:

Cov(Xs, X¢) = Cov(B1—s — B1,Bi_t+ — B1) = Cov(Bi_s, B1_t) — Cov(B_s, B1)
—Cov(By, Bi—t) + Cov(By, By)
= 1l-s)A(1—-t)—(1—-s)—(1—-¢t)+1
= s+t—(sVt)
= sAt,

i.e. X has the same mean and covariance functions as a Brownian motion.

o Fix(0 <t <ty <...<t,. Since B is a Brownian motion, we have that (B, By_y,, ..., B1_y, ) ~
N(0,%) with some matrix ¥ (we have already seen that the expectation is 0). Since
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thus (Xy,, ..., X3,)" is multivariate Gaussian distributed.

e Since t — B is continuous, t — By, + Z(B; — By,) is continuous as a composition of
continuous functions. This shows that ¢ — X, is continuous in every point ¢ € [0, 1]\ {0}
Since By, = By, + Z(By, — By,), the two cases in the definition of X; coincide for t = ¢,
thus ¢ — X, is continuous.

e Since 0 < tg, Xog = By =0,

e (It is not necessary to prove the following. Everything also follows from the next point)
For t € [0, 1], we have

EX o ]EBt - O7 t < tO
! EB,, + E[Z(B;, — By,)] =EBy;, + EZE(B, — By,) =0, t > to,

since Z, B are independent and EB;, = 0 = E(B; — By,).

For s,t € [0, 1] we have three cases: For s,t < tg, we have Cov(X}, X;) = Cov(By, By) =
min{s,t} since B is a Brownian motion.

For s < ty <'t, we have

COV(Xt, XS) = COV(BS7 Bto + Z(Bt — Bto)) = COV(BS, Bto) + COV(.BS7 Z(Bt — Bto))
= min{s,to} + E[ZBs(B; — By,)] = s = min{s, t}.

-~

=E[Z]-E[Bs(Bt—Bi,)=0
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In the case tg < s,t, we have

Cov(Xs, X3)

Cov(By, + Z(B, — Byy), By + Z(B, — By,))
Cov(Big, Biy) + Cov(Bug, Z(By — By)) + Cov(Byy, Z(Bs — By,))
~0+0 (like above)
+Cov(Z(B, — By,), Z(B; — By,))
to + E[Z*(B, — By,)(B; — By,)]
to + E[Z2°] (E[B.Bi] + E[By, By,| — E[B:Bi,| — E[B:By,))
_
to + (min{s, ¢} + min{to, to} — min{s, o} — min{¢, o })
to + min{s, t} +to — to — to = min{s, t}.

i.e. X has the same mean and covariance functions as a Brownian motion.

e FixneN. Let k € {1,...,n} besuch that 0 < t; <ty < ... <t <ty <tpy <..<t, <L
Let Ay, ..., A, € B(R). Then we have, since Z € {—1, 1} is independent of B,

P(Xy, € Ay, ..., Xy, € Ay)
= P(Vie{l,...k}:B, €A, Vie{k+1,.,n}:By+Z(B, —By) € 4A)
= P(Vie{l,...k} : B, €A, Vie{k+1,.,n}:By+Z(B, —By,) €A, Z=1)
+P(Vi e {1,....,k}: B, € A;, Vie{k+1,..,n}:By+Z(B, —By) € A, Z=-1)
= P(Vie{l,..,n}: B, € 4)P(Z =1)
+P(Vi € {1,...,k}: B, € A;, Vie{k+1,..,n}:2By — B, € A)P(Z =—-1) ().

Note that (B, ..., B,) ~ N(0,%) with ¥;; = min{¢;,¢,} since B is a centered Gaussian
process with covariance function EB;B; = min{s,t}. We also have

By,

B,
2By, — By, .,

2By, — By,
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0 0 :
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with the same ¥ as above since for ¢ < k, j > k + 1 we have

COV(Bti, 2Bt0 — Btj) = 2COV<Bti, Bto) — COV(BtZ., Btj) = 2tl — tl = tz = min{ti, tj},

and for 7,5 > k + 1:

COV(QBtO — Bti’ 2Bt0 — Btj>
4COV(Bt0, Bto) — 2COV(BtO, Bh) — QCOV(BtO, Btj) —|— COV(Bti, Btj)
= 4t0 - 2t0 - 2t0 + min{ti, t]} = Hlil’l{ti, tj}



This shows that
P(X;, € Ay,..., Xy, € Ay)
1 :

—
*
~

+P(Vi€ {1, k}: B, €A, Vi€ {k+1,..n}:2B, — By, € AZ-))

_ %[P(N(O,Z) € A% x A +B(N(OD) € Ay x . x A)]

= P(N(0,%X) € Ay x ... x 4,)
Since {A; x ... x A, : A; € B(R) fori = 1,...,n} is a generating system of B(R"), we

have shown that (Xi,,..., Xy,) ~ N(0,%), i.e. (X4, ..., Xy,) has the same distribution as
(By,, ..., B,).

(iii) We have to show that (X;);>¢ satisfies the properties of a standard Brownian motion. Here,
we use the original definition with independent increments.

(1) Since (By), (B;) are Brownian motions, it holds that By = B, = 0. Thus Xo=a-By+b-
B)=0+0=0.

(2) Since (By), (B;) are Brownian motions, ¢ — B; and ¢t — Bj are continuous. Since '+’ is a
continuous operation, t — X; = B, + B; is continuous as well.

(3) Let n € N, 0 < t; < ... < t,. Since (By), (Bj) are Brownian motions, (B, — By, . )i=1..n

,,,,,

we conclude that the 2n random variables are jointly independent:

P(Btithifl)izl ..... nv(BéifBéi_l)izl ,,,,, n — IP)(Bti_Bti—l)izla“-vn ® ]P(BéiiBéi—l)i:1 """ n
n n
! !
= ® ]P)Bfi_Bti—l ® ® ]P)Bfi_Bfi—l .
=1 =1

Thus (th - Xti—l)i=1 ~~~~~ n — ((Bzil - Bi/tt,l) + (Btz - Btt—l))izl

binations of different independent random variables.

» are independent as com-

.....

(4) Let s < t. Since (By), (Bj) are Brownian motions, we have By — B; ~ N(0,¢t — s) and
B, — B, ~ N(0,t — s). Since (B; — By), (B; — B.) are independent, we conclude that

X, —X,=a-(B,—B,)+b-(B.— B) ~ N(0,a2(t — ) + b*(t — s)) " Z7 N(0, ¢ — s).

(iv) Since 7(-) is continuous and strictly increasing with r(0) = 0, we have that the inverse
r~1(-) is continuous and strictly increasing with r~*(0). We now show that X satisfies the
characterizing conditions of a Brownian motion:

Wi—1(9)

o Xy = = Mo — () since Wy = 0.

o(r=1(0)) — v(0)

. : : . : W,
o Since v € C[0,00) and r~" is continuous and W is continuous, we have that ¢ — ;== 0 —

: . . . . O
X, is continuous as a composition of continuous functions.

e Since W is a centered Gaussian process with covariance function y(s,t) = wu(s)v(t), it
holds that EW, = 0 and Cov(W,, W;) = u(s)v(t) for all 0 < s < t. We conclude that for

all t > 0,
EW,,‘fl(t)

v(r=1(t))
3

E[X,] = =0,



and for all 0 < s < ¢ (note that r~(s) < r~!(¢) since ! is nondecreasing)

1
Cov(Xs, X,) = U(rl(t))lv(Tl(S))
_ U(r—l(t))v(’f’_l(S))MT (s)v(r='(t))
_ourT ) r(r~'(s) = s = min{s, t}

v(r=i(s))

which shows that X has the covariance function of a Brownian motion.

COV(WT—l(t) s Wr—l(s)>

~—

e letneN 0<ty;<t;<..<t, <1 Since W is a centered Gaussian process, we have
that (W,—1(4,), ..., Wom1(4,,y)" ~ N (0, 3) with some 3 € R™". We conclude that

0 .. 0
o1 (1)
X, . R ; Wi
L= S ' : : ~ N(0, ASA)
th . - .. (1) erl(tn)
R O .« .. 0 m
—a

which shows that X is a (centered) Gaussian process.
(b) We have to show that X satisfies the characterizing conditions of a Brownian Bridge:

e Since t — B is continuous, the same holds for the continuous composition ¢ — (1 —¢)B_+_
for t € [0,1). For ¢t = 1, we have

1—-t

1-1 si=17t
lim X, =lim_ ¢ (—)B 1 =" lims- By, =0
t—1 t—1 1 t (%) s—0

~

since Wy := sBy/s is a Brownian motion (time reverse) and thus continuous in 0.

® on(l—O)'B():O,

e Fort €[0,1), we have EX; = (1 —¢)EB_+_ = 0 (trivially EX; = 0). Note that ¢ — s
increasing for ¢ € [0,1). Thus we have for s <t € [0,1):

S

Cov(X,, X¢) = Cov((1— t)Bl%t, (1—=s)Bs )= (1—-1t)(1—23s)- T

1—s

= $(1 —t) = min{s,t} — st

i.e. X has the same mean and covariance functions as a Brownian motion (the case s =1
or t = 1 is trivial since X; = 0 and thus the covariance is 0).

o Fix 0 <t) <ty < ..<t, Since B is a Brownian motion, we have that (Xy,..., Xy, ) =
(B_ty ..., Bltiyz)/ ~ N(0,%) with some matrix ¥ (we have already seen that the expec-
1—tq —in

tation is 0), thus (Xy,, ..., X, )" is multivariate Gaussian distributed.
(c) (i) We have to show the three properties of a martingale: We have for all t > 0:
e Since B; € F;, we have that X; = Bt2 —t € F; as a composition of measurable functions.

o E|X;| <E[B}+t=t+t=2t < oo (since B; ~ N(0,t)).



e We have that B, — B; ~ N(0,t — s) is independent of Fy, and By is Fs-measurable. Thus

E[X\|F,| =E[B —t|F,] = E[(B,— B,)>+2BB, — B2 — t|F,]
= E[(B; — By)* + 2(B, — B,)B, + B> — t|F,]
= E[(B; — B,)* +2B,E[B; — B,] +B% — t

[\

-~

=t—s =0

= B’-s5=X,.

(ii) We have to show the three properties of a martingale: We have for all ¢ > 0:
e By continuity, we have fot B, ds = lim,,_, % Zzzl B, . Since t% <t B,r» € F. Thus
L3 B, L € F; for all n € N which implies that fg B, ds € F,. We conclude that
X, =1tB, — fot B, ds € F; as a measurable composition of F;-measurable functions.
e With Fubini’s theorem, we have E|X;| < tE|Bt|+f0t E|Bs| ds < tE[Bf]1/2+f0t E[B2]'/2ds <
32 + f(f s'/2 ds < oo (since B, ~ N(0,s) for 0 < s < t).
e We have

t S
E[X,|F)] = t]E[Bt|fs]—]E[/ B. — B, du+Bs(t—s)+/ B, dulF,).
s 0

By the first point, we have that fos B, du € F,. By Fubini’s theorem (it holds that

E/’B“_Bs‘dug/ E|B, — Bs| duﬁ/(u—s)mdu<oo
s s —— s
<E[(Bu—Bs)2]/2=(u—s)1/2

) we have E[[' B, — B, dulF,] = [[E[B, — B,|F,] du = ['E[B, — B)] du = 0. We
conclude that

E[X|F,] =t (E[B; — By|F,] +B;) — By(t — s) — / B, du = sB, — / B, du = X,.
~ ~~ - 0 0

=E[B;— Bs]=0

(iii) We have to show the three properties of a martingale: For all ¢ > 0,

o E|X;| = exp(—’\Q—zt) -Eexp(AB;) hine exp(—’\2—2t) - exp(3tA?) = 1 < oo (note that AB; ~
N(0,tA\?)).

e X, € F; since By € F; (so X; is a composition of measurable functions).

e For 0 < s <t, we know that exp(o(B; — By)) is independent of F; (see Exercise Sheet 4,
Task 16). Therefore,

E[X,|F,] = Soexp ( - 7t) -Elexp(A(B; — By)) - exp(ABs)] F
= Syexp (= 21) - exp(AB.) - Elexp(A(B, — B.)
B Syexp (- %Qt) - exp(ABy) - exp (%Az(t ~5))
= Spexp (AB. - %23) = X,



(d) (i) First possibility (Elementary argumentation): We use the generating system & :=
{(—00,z] : € R} of B(R). For arbitrary (—oo,z| € £, we have

P (~00,2] = {feC,1]: Jnax f(s)gx}:{fGC’[O,l]:VsE[O,T]:f(s)gx}

f cont.

{f € Clo, 1]'Vs€[0, TINQ: f(s) <z}
=[] [e001:f) <} eBC.1)

s€[0,7]NQ

(OO»’L‘]

as a countable intersection of elements of B(C10, 1]) (recall that B(C[0,1]) is generated by the
projections m; : C[0,1] — R, f — f(¢)).

Second possibility (continuity): Recall that B(C[0, 1]) is generated by the open sets in (C10, 1], ||-
||o)- Recall that £ := {U C R : U open} is a generating system of B(R). If we show that ®
is continuous, then it follows that for each U € &, ®~1(U) is open in (C[0,1],]| - ||s) and thus
d~Y(U) € B(C|0,1]) which shows measurability of ®.

It remains to show that ® is continuous. Note that

(k)

[2(f) = (g)| = | max f(s) — max g(s)| < max |f(s) = g(s)] = IS = gll,

0<s<T 0<s<T 0<s<T

i.e. ® is Lipschitz continuous. [Note that f = f — g 4+ ¢g implies

max f(s) < max (f(s) —g(s)) + max g(s)

0<s<T T 0<s<T 0<s<T
_ < — <
= max f(s) — max g(s) < max (f(s) — g(s)) < max |f(s) —g(s)|

which leads to (***) if we swap the roles of f, g and use both obtained inequalities].

(ii) By the lecture it is known that W = (W,);>o with W; := T B,r is again a Brownian
motion (scaling invariance). By (i) we conclude that

O(W) = oIEa<XTW \/_ Jnax BS/T = \/_ max B, = VTM,.

(iii) By the lecture it is known that W = (W});>0 with W, := —B; is again a Brownian motion
(symmetry w.r.t. the x-axis). By (i) we conclude that

4

MT = (I)(B) @(W) = max Ws — max (_Bs) — — min Bs = —mp.

0<s<T 0<s<T 0<s<T

Thus EMr = —Emy, or equivalently E[M7 + my| = 0.

(e) (i) We use the generating system & := {(z,1] : = € [0,1]} U {oc} of B([0, 1] U {oc}). For
arbitrary (z,1] € £, we have

a1 = {feC[o,1]:inf{t €0,1]: f(t) < -1} > 2}
= {feC0,1]:Vse[0,z]: f(s) > —1}
Tt (e C0,1]:Vse0,2]NQ: f(s) > —1}
= () {feCo1]: f(s) > -1} € BC[0,1]).
s€[0,z]NQ

t [71700\),68(0[071])
For {oo} € &, we have @~ {oo} = {f € C[0,1] : Vs € [0,1] : f(s) > —1} € B(C[0,1]) as above.
(ii) By the lecture, it is known that B LW = (—Bt)i>0. We obtain that

4

n=¢B)=0(W)=inf{t>0: B, < -1} =inf{t >0: B, > 1} = .



(f) (i) Note that if f € C[0,1], then [Vs,t € [0,1]NQ : |f(s) — f(t)] < C|s — t]*] already
implies the same statement for all s,¢ € [0,1]. To prove this, let s,¢ € [0, 1] be arbitrary and
(sn), (tn) C Q sequences with s,, — s, t,, — t. Then we have |f(s,) — f(t,)| < C|sp, —t,|* for all
n € N. Taking lim,,_,o, on both sides and using the continuity of f, we obtain |f(s) — f(¢)] <
Cls —t]*. (%)

Now, note that

M

{w e N:Vs,t:|Bs(w) — Bi(w)| < Cls —t|*}
{weN:Vs,t €eQnN0,1]: |Bs(w) — By(w)| < Cls —t|*}
=[] {weQ:|Biw)—Biw)| <Cls—t|"} € A

5,t€QN[0,1] eTél

—
*
~

(More precisely (but not necessary to point this out) we have {w € Q : |Bs(w) — Bi(w)| <
Cls—t|*} = (Bs, By)"Y(N) with N := {(y, 2) € R?*: |y — 2| < C|s —t|*}. Note that N € B(R)2.
The process (Bs, B;) is A-B(R)*measurable since By, B; are A-B(R)-measurable (result from
Probability theory 1), thus (Bs, B;) (V) € A).

(i) Since B(£) — B(21) ~ N(0,1), k =1, ..., n are i.i.d., we obtain with some Z ~ N(0,1):

k)—B(k_l

n n

1 n n
P(Vk € {1,...,n} : | B( )| < Cn7?) = P(%|Z| < Cn~)" =P(|Z] < Cnz—°)".
For n large enough, Cn2~® < 1. In this case, the above term is smaller than P(|Z| < 1)" — 0
(n — o00) since P(|Z] <1) < 1.
(iii) If B is Hoelder continuous w.r.t. (e, C'), then it would hold for all n» € N and for k =1, ...,n
that |B(%) — B(21)| < C|E — ELj* = Cp=. Thus for all n € N,

k—1

n

)‘ < C’n_a) @—> 0.

P(M) <P(Vk € {1,...n}: \B(k) — B(

n

This shows that P(M) = 0, i.e. almost surely B is not Hoelder continuous w.r.t. («, C).

(g) (i) Note that if it holds that f(t) < B, < g(t) for all t € QN [0, 1], then the same holds
also for ¢t € [0, 1]. Proof: For ¢t € [0, 1] we can find a sequence ¢, — t with (¢,) C QN [0,1]. By
assumption, f(t,) < B;, < g(t,) for alln € N. By n — o0, f(t) < By < g(t) (*).

We have
M = {weQ:Vte[0,1]: f(t) < B/(w) < g(t)}
Y (we:vieQn[o,1): f(t) < Bi(w) < g(t)}
=[] {weQ:f(t) <Biw) <g()} €A
teQnIo,1] A

(ii) It holds that (the inequalities are due to the fact that the conditions in the P(-) imply the



conditions in the P(:) in the next line):

P(Vk € {0,...,n} : % <Bx < zﬁ)

n2
k+1 2k ok +1) k
< P(Vk€{0,..,n—1}: Sy < B =B < _ﬁ
—k+1 k+2
= P(VkE{O,...,n—l}: :_ SBLJ?—B%S _’—2 )
-i< 11d 1 SL;SZ
1 1 2\n
< P(——<N0O,—=)< -
< p(-lenoby<d)

< P(-1<N(0,1)<2)" =a"—0,

since a :=P(—1< N(0,1) <2) < 1.

(iii) If B would be surrounded by f and g, then for all n € N it would hold that Vk € {0, ...

n_k2 < B% < 2%. Thus by (b),

This shows that P(M) = 0, i.e. almost surely B is not surrounded by f and g.

,n}:



