
Exam preparation sheet - Solutions part 2

0.2 Brownian motion and its properties

Solutions: (a) (i) We have to show that X satisfies the conditions of a Brownian motion:

• Since t 7→ B is continuous, the same holds for the continuous composition t 7→ B1−t−B1 =
Xt,

• X0 = B1−0 −B1 = 0,

• For t ∈ [0, 1], we have EXt = EB1−t − EB1 = 0 and for s, t ∈ [0, 1]:

Cov(Xs, Xt) = Cov(B1−s −B1, B1−t −B1) = Cov(B1−s, B1−t)− Cov(B1−s, B1)

−Cov(B1, B1−t) + Cov(B1, B1)

= (1− s) ∧ (1− t)− (1− s)− (1− t) + 1

= s+ t− (s ∨ t)
= s ∧ t,

i.e. X has the same mean and covariance functions as a Brownian motion.

• Fix 0 ≤ t1 < t2 < ... < tn. SinceB is a Brownian motion, we have that (B1, B1−t1 , ..., B1−tn)′ ∼
N(0,Σ) with some matrix Σ (we have already seen that the expectation is 0). Since

Xt1
...
Xtn

 =


−1 1 0 . . . 0

−1 0 1
. . .

...
...

...
. . .

. . . 0
−1 0 . . . 0 1


︸ ︷︷ ︸

=:A

·


B1

B1−t1
...

B1−tn

 ∼ N(0, AΣA′),

thus (Xt1 , ..., Xtn)′ is multivariate Gaussian distributed.

(ii)

• Since t 7→ B is continuous, t 7→ Bt0 + Z(Bt − Bt0) is continuous as a composition of
continuous functions. This shows that t 7→ Xt is continuous in every point t ∈ [0, 1]\{t0}.
Since Bt0 = Bt0 + Z(Bt0 − Bt0), the two cases in the definition of Xt coincide for t = t0,
thus t 7→ Xt is continuous.

• Since 0 < t0, X0 = B0 = 0,

• (It is not necessary to prove the following. Everything also follows from the next point)
For t ∈ [0, 1], we have

EXt =

{
EBt = 0, t < t0

EBt0 + E[Z(Bt −Bt0)] = EBt0 + EZE(Bt −Bt0) = 0, t ≥ t0,

since Z,B are independent and EBt0 = 0 = E(Bt −Bt0).
For s, t ∈ [0, 1] we have three cases: For s, t < t0, we have Cov(Xt, Xs) = Cov(Bt, Bs) =
min{s, t} since B is a Brownian motion.
For s < t0 ≤ t, we have

Cov(Xt, Xs) = Cov
(
Bs, Bt0 + Z(Bt −Bt0)

)
= Cov(Bs, Bt0) + Cov(Bs, Z(Bt −Bt0))

= min{s, t0}+ E[ZBs(Bt −Bt0)]︸ ︷︷ ︸
=E[Z]·E[BS(Bt−Bt0 )=0

= s = min{s, t}.
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In the case t0 ≤ s, t, we have

Cov(Xs, Xt) = Cov
(
Bt0 + Z(Bs −Bt0), Bt0 + Z(Bt −Bt0)

)
= Cov(Bt0 , Bt0) + Cov(Bt0 , Z(Bt −Bt0)) + Cov(Bt0 , Z(Bs −Bt0))︸ ︷︷ ︸

=0+0 (like above)

+Cov(Z(Bs −Bt0), Z(Bt −Bt0))

= t0 + E[Z2(Bs −Bt0)(Bt −Bt0)]

= t0 + E[Z2]︸ ︷︷ ︸
=1

(
E[BsBt] + E[Bt0Bt0 ]− E[BsBt0 ]− E[BtBt0 ]

)
= t0 +

(
min{s, t}+ min{t0, t0} −min{s, t0} −min{t, t0}

)
= t0 + min{s, t}+ t0 − t0 − t0 = min{s, t}.

i.e. X has the same mean and covariance functions as a Brownian motion.

• Fix n ∈ N. Let k ∈ {1, ..., n} be such that 0 ≤ t1 < t2 < ... < tk < t0 ≤ tk+1 < ... < tn ≤ 1.
Let A1, ..., An ∈ B(R). Then we have, since Z ∈ {−1, 1} is independent of B,

P(Xt1 ∈ A1, ..., Xtn ∈ An)

= P
(
∀i ∈ {1, ..., k} : Bti ∈ Ai, ∀i ∈ {k + 1, ..., n} : Bt0 + Z(Bti −Bt0) ∈ Ai

)
= P

(
∀i ∈ {1, ..., k} : Bti ∈ Ai, ∀i ∈ {k + 1, ..., n} : Bt0 + Z(Bti −Bt0) ∈ Ai, Z = 1

)
+P
(
∀i ∈ {1, ..., k} : Bti ∈ Ai, ∀i ∈ {k + 1, ..., n} : Bt0 + Z(Bti −Bt0) ∈ Ai, Z = −1

)
= P

(
∀i ∈ {1, ..., n} : Bti ∈ Ai

)
P(Z = 1)

+P
(
∀i ∈ {1, ..., k} : Bti ∈ Ai, ∀i ∈ {k + 1, ..., n} : 2Bt0 −Bti ∈ Ai

)
P(Z = −1) (∗).

Note that (Bt1 , ..., Btn) ∼ N(0,Σ) with Σij = min{ti, tj} since B is a centered Gaussian
process with covariance function EBsBt = min{s, t}. We also have



Bt1
...
Btk

2Bt0 −Btk+1

...
2Bt0 −Btn


=



1 0 . . . 0 0 0 . . . . . . 0

0
. . .

. . .
... 0

...
...

...
. . .

. . . 0 0
...

...
0 . . . 0 1 0 0 . . . . . . 0
0 . . . . . . 0 2 −1 0 . . . 0
...

... 2 0
. . .

. . .
...

...
... 2

...
. . .

. . . 0
0 . . . . . . 0 2 0 . . . 0 −1


·



Bt1
...
Btk

Bt0

Btk+1

...
Btn


∼ N(0,Σ)

with the same Σ as above since for i ≤ k, j ≥ k + 1 we have

Cov(Bti , 2Bt0 −Btj) = 2Cov(Bti , Bt0)− Cov(Bti , Btj) = 2ti − ti = ti = min{ti, tj},

and for i, j ≥ k + 1:

Cov(2Bt0 −Bti , 2Bt0 −Btj)

= 4Cov(Bt0 , Bt0)− 2Cov(Bt0 , Bti)− 2Cov(Bt0 , Btj) + Cov(Bti , Btj)

= 4t0 − 2t0 − 2t0 + min{ti, tj} = min{ti, tj}.
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This shows that

P(Xt1 ∈ A1, ..., Xtn ∈ An)

(∗)
=

1

2

(
P
(
∀i ∈ {1, ..., n} : Bti ∈ Ai

)
+P
(
∀i ∈ {1, ..., k} : Bti ∈ Ai, ∀i ∈ {k + 1, ..., n} : 2Bt0 −Bti ∈ Ai

))
=

1

2

[
P
(
N(0,Σ) ∈ A1 × ...× An

)
+ P

(
N(0,Σ) ∈ A1 × ...× An

)]
= P(N(0,Σ) ∈ A1 × ...× An)

Since {A1 × ... × An : Ai ∈ B(R) for i = 1, ..., n} is a generating system of B(Rn), we
have shown that (Xt1 , ..., Xtn) ∼ N(0,Σ), i.e. (Xt1 , ..., Xtn) has the same distribution as
(Bt1 , ..., Btn).

(iii) We have to show that (Xt)t≥0 satisfies the properties of a standard Brownian motion. Here,
we use the original definition with independent increments.

(1) Since (Bt), (B
′
t) are Brownian motions, it holds that B0 = B′0 = 0. Thus X0 = a ·B0 + b ·

B′0 = 0 + 0 = 0.

(2) Since (Bt), (B
′
t) are Brownian motions, t 7→ Bt and t 7→ B′t are continuous. Since ’+’ is a

continuous operation, t 7→ Xt = Bt +B′t is continuous as well.

(3) Let n ∈ N, 0 ≤ t1 < ... < tn. Since (Bt), (B
′
t) are Brownian motions, (Bti − Bti−1

)i=1,...,n

are independent and (B′ti−B
′
ti−1

)i=1,...,n are independent. Since (Bt), (B
′
t) are independent,

we conclude that the 2n random variables are jointly independent:

P(Bti−Bti−1 )i=1,...,n,(B
′
ti
−B′ti−1

)i=1,...,n = P(Bti−Bti−1 )i=1,...,n ⊗ P(B′ti
−B′ti−1

)i=1,...,n

=

(
n⊗
i=1

PBti−Bti−1

)
⊗

(
n⊗
i=1

PB
′
ti
−B′ti−1

)
.

Thus (Xti −Xti−1
)i=1,...,n = ((B′ti −B

′
tt−1

) + (Bti −Btt−1))i=1,...,n are independent as com-
binations of different independent random variables.

(4) Let s ≤ t. Since (Bt), (B
′
t) are Brownian motions, we have Bt − Bs ∼ N(0, t − s) and

B′t −B′s ∼ N(0, t− s). Since (Bt −Bs), (B
′
t −B′s) are independent, we conclude that

Xt −Xs = a · (Bt −Bs) + b · (B′t −B′s) ∼ N(0, a2(t− s) + b2(t− s)) a2+b2=1
= N(0, t− s).

(iv) Since r(·) is continuous and strictly increasing with r(0) = 0, we have that the inverse
r−1(·) is continuous and strictly increasing with r−1(0). We now show that X satisfies the
characterizing conditions of a Brownian motion:

• X0 =
Wr−1(0)

v(r−1(0))
= W0

v(0)
= 0 since W0 = 0.

• Since v ∈ C[0,∞) and r−1 is continuous andW is continuous, we have that t 7→ Wr−1(t)

v(r−1(t))
=

Xt is continuous as a composition of continuous functions.

• Since W is a centered Gaussian process with covariance function γ(s, t) = u(s)v(t), it
holds that EWt = 0 and Cov(Ws,Wt) = u(s)v(t) for all 0 ≤ s ≤ t. We conclude that for
all t ≥ 0,

E[Xt] =
EWr−1(t)

v(r−1(t))
= 0,
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and for all 0 ≤ s ≤ t (note that r−1(s) ≤ r−1(t) since r−1 is nondecreasing)

Cov(Xt, Xs) =
1

v(r−1(t))v(r−1(s))
Cov(Wr−1(t),Wr−1(s))

=
1

v(r−1(t))v(r−1(s))
u(r−1(s))v(r−1(t))

=
u(r−1(s))

v(r−1(s))
= r(r−1(s)) = s = min{s, t}

which shows that X has the covariance function of a Brownian motion.

• Let n ∈ N, 0 ≤ t0 < t1 < ... < tn ≤ 1. Since W is a centered Gaussian process, we have
that (Wr−1(t1), ...,Wr−1(tn))

′ ∼ N(0,Σ) with some Σ ∈ Rn×n. We conclude that

Xt1
...
Xtn

 =


1

v(r−1(t1))
0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0
0 . . . 0 1

v(r−1(tn))


︸ ︷︷ ︸

=:A

·

Wr−1(t1)

...
Wr−1(tn)

 ∼ N(0, AΣA′)

which shows that X is a (centered) Gaussian process.

(b) We have to show that X satisfies the characterizing conditions of a Brownian Bridge:

• Since t 7→ B is continuous, the same holds for the continuous composition t 7→ (1−t)B t
1−t

for t ∈ [0, 1). For t = 1, we have

lim
t→1

Xt = lim
t→1

t︸︷︷︸
→1

·
(1− t

t

)
·B 1

( 1−t
t )

s:= 1−t
t= lim

s→0
s ·B1/s = 0

since Ws := sB1/s is a Brownian motion (time reverse) and thus continuous in 0.

• X0 = (1− 0) ·B0 = 0,

• For t ∈ [0, 1), we have EXt = (1− t)EB t
1−t

= 0 (trivially EX1 = 0). Note that t 7→ t
1−t is

increasing for t ∈ [0, 1). Thus we have for s ≤ t ∈ [0, 1):

Cov(Xs, Xt) = Cov((1− t)B t
1−t
, (1− s)B s

1−s
) = (1− t)(1− s) · s

1− s
= s(1− t) = min{s, t} − st

i.e. X has the same mean and covariance functions as a Brownian motion (the case s = 1
or t = 1 is trivial since X1 = 0 and thus the covariance is 0).

• Fix 0 ≤ t1 < t2 < ... < tn. Since B is a Brownian motion, we have that (Xt1 , ..., Xtn)′ =
(B t1

1−t1

, ..., B tn
1−tn

)′ ∼ N(0,Σ) with some matrix Σ (we have already seen that the expec-
tation is 0), thus (Xt1 , ..., Xtn)′ is multivariate Gaussian distributed.

(c) (i) We have to show the three properties of a martingale: We have for all t ≥ 0:

• Since Bt ∈ Ft, we have that Xt = B2
t − t ∈ Ft as a composition of measurable functions.

• E|Xt| ≤ E[B2
t ] + t = t+ t = 2t <∞ (since Bt ∼ N(0, t)).
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• We have that Bt−Bs ∼ N(0, t− s) is independent of Fs, and Bs is Fs-measurable. Thus

E[Xt|Fs] = E[B2
t − t|Fs] = E[(Bt −Bs)

2 + 2BtBs −B2
s − t|Fs]

= E[(Bt −Bs)
2 + 2(Bt −Bs)Bs +B2

s − t|Fs]
= E[(Bt −Bs)

2]︸ ︷︷ ︸
=t−s

+2Bs E[Bt −Bs]︸ ︷︷ ︸
=0

+B2
s − t

= B2
s − s = Xs.

(ii) We have to show the three properties of a martingale: We have for all t ≥ 0:

• By continuity, we have
∫ t
0
Bs ds = limn→∞

1
n

∑n
k=1Bt· k

n
. Since t k

n
≤ t, Bt· k

n
∈ Ft. Thus

1
n

∑n
k=1Bt· k

n
∈ Ft for all n ∈ N which implies that

∫ t
0
Bs ds ∈ Ft. We conclude that

Xt = tBt −
∫ t
0
Bs ds ∈ Ft as a measurable composition of Ft-measurable functions.

• With Fubini’s theorem, we have E|Xt| ≤ tE|Bt|+
∫ t
0
E|Bs| ds ≤ tE[B2

t ]
1/2+

∫ t
0
E[B2

s ]
1/2 ds ≤

t3/2 +
∫ t
0
s1/2 ds <∞ (since Bs ∼ N(0, s) for 0 ≤ s ≤ t).

• We have

E[Xt|Fs] = tE[Bt|Fs]− E[

∫ t

s

Bu −Bs du+Bs(t− s) +

∫ s

0

Bu du|Fs].

By the first point, we have that
∫ s
0
Bu du ∈ Fs. By Fubini’s theorem (it holds that

E
∫ t

s

|Bu −Bs| du ≤
∫ t

s

E|Bu −Bs|︸ ︷︷ ︸
≤E[(Bu−Bs)2]1/2=(u−s)1/2

du ≤
∫ t

s

(u− s)1/2 du <∞

) we have E[
∫ t
s
Bu − Bs du|Fs] =

∫ t
s
E[Bu − Bs|Fs] du =

∫ t
s
E[Bu − Bs] du = 0. We

conclude that

E[Xt|Fs] = t
(
E[Bt −Bs|Fs]︸ ︷︷ ︸
=E[Bt−Bs]=0

+Bs

)
−Bs(t− s)−

∫ s

0

Bu du = sBs −
∫ s

0

Bu du = Xs.

(iii) We have to show the three properties of a martingale: For all t ≥ 0,

• E|Xt| = exp(−λ2

2
t) · E exp(λBt)

hint
= exp(−λ2

2
t) · exp(1

2
tλ2) = 1 < ∞ (note that λBt ∼

N(0, tλ2)).

• Xt ∈ Ft since Bt ∈ Ft (so Xt is a composition of measurable functions).

• For 0 ≤ s ≤ t, we know that exp(σ(Bt −Bs)) is independent of Fs (see Exercise Sheet 4,
Task 16). Therefore,

E[Xt|Fs] = S0 exp
(
− λ2

2
t
)
· E[exp(λ(Bt −Bs)) · exp(λBs)| Fs]

= S0 exp
(
− λ2

2
t
)
· exp(λBs) · E[exp(λ(Bt −Bs))]

hint
= S0 exp

(
− λ2

2
t
)
· exp(λBs) · exp

(1

2
λ2(t− s)

)
= S0 exp

(
λBs −

λ2

2
s
)

= Xs.
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(d) (i) First possibility (Elementary argumentation): We use the generating system E :=
{(−∞, x] : x ∈ R} of B(R). For arbitrary (−∞, x] ∈ E , we have

Φ−1(−∞, x] = {f ∈ C[0, 1] : max
0≤s≤T

f(s) ≤ x} = {f ∈ C[0, 1] : ∀s ∈ [0, T ] : f(s) ≤ x}

f cont.
= {f ∈ C[0, 1] : ∀s ∈ [0, T ] ∩Q : f(s) ≤ x}
=

⋂
s∈[0,T ]∩Q

{f ∈ C[0, 1] : f(s) ≤ x}︸ ︷︷ ︸
π−1
t (−∞,x]

∈ B(C[0, 1])

as a countable intersection of elements of B(C[0, 1]) (recall that B(C[0, 1]) is generated by the
projections πt : C[0, 1]→ R, f 7→ f(t)).
Second possibility (continuity): Recall that B(C[0, 1]) is generated by the open sets in (C[0, 1], ‖·
‖∞). Recall that E := {U ⊂ R : U open} is a generating system of B(R). If we show that Φ
is continuous, then it follows that for each U ∈ E , Φ−1(U) is open in (C[0, 1], ‖ · ‖∞) and thus
Φ−1(U) ∈ B(C[0, 1]) which shows measurability of Φ.
It remains to show that Φ is continuous. Note that

|Φ(f)− Φ(g)| =
∣∣ max
0≤s≤T

f(s)− max
0≤s≤T

g(s)
∣∣ (∗∗∗)≤ max

0≤s≤T
|f(s)− g(s)| = ‖f − g‖∞,

i.e. Φ is Lipschitz continuous. [Note that f = f − g + g implies

max
0≤s≤T

f(s) ≤ max
0≤s≤T

(f(s)− g(s)) + max
0≤s≤T

g(s)

⇒ max
0≤s≤T

f(s)− max
0≤s≤T

g(s) ≤ max
0≤s≤T

(f(s)− g(s)) ≤ max
0≤s≤T

|f(s)− g(s)|

which leads to (***) if we swap the roles of f, g and use both obtained inequalities].
(ii) By the lecture it is known that W = (Wt)t≥0 with Wt :=

√
TBt/T is again a Brownian

motion (scaling invariance). By (i) we conclude that

MT = Φ(B)
d
= Φ(W ) = max

0≤s≤T
Ws =

√
T max

0≤s≤T
Bs/T =

√
T max

0≤s≤1
Bs =

√
TM1.

(iii) By the lecture it is known that W = (Wt)t≥0 with Wt := −Bt is again a Brownian motion
(symmetry w.r.t. the x-axis). By (i) we conclude that

MT = Φ(B)
d
= Φ(W ) = max

0≤s≤T
Ws = max

0≤s≤T
(−Bs) = − min

0≤s≤T
Bs = −mT .

Thus EMT = −EmT , or equivalently E[MT +mT ] = 0.

(e) (i) We use the generating system E := {(x, 1] : x ∈ [0, 1]} ∪ {∞} of B([0, 1] ∪ {∞}). For
arbitrary (x, 1] ∈ E , we have

Φ−1(x, 1] = {f ∈ C[0, 1] : inf{t ∈ [0, 1] : f(t) < −1} > x}
= {f ∈ C[0, 1] : ∀s ∈ [0, x] : f(s) ≥ −1}

f cont.
= {f ∈ C[0, 1] : ∀s ∈ [0, x] ∩Q : f(s) ≥ −1}
=

⋂
s∈[0,x]∩Q

{f ∈ C[0, 1] : f(s) ≥ −1}︸ ︷︷ ︸
π−1
t [−1,∞)∈B(C[0,1])

∈ B(C[0, 1]).

For {∞} ∈ E , we have Φ−1{∞} = {f ∈ C[0, 1] : ∀s ∈ [0, 1] : f(s) ≥ −1} ∈ B(C[0, 1]) as above.
(ii) By the lecture, it is known that B d

= W := (−Bt)t≥0. We obtain that

τ1 = Φ(B)
d
= Φ(W ) = inf{t ≥ 0 : −Bt < −1} = inf{t ≥ 0 : Bt > 1} = τ2.
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(f) (i) Note that if f ∈ C[0, 1], then
[
∀s, t ∈ [0, 1] ∩ Q : |f(s) − f(t)| ≤ C|s − t|α

]
already

implies the same statement for all s, t ∈ [0, 1]. To prove this, let s, t ∈ [0, 1] be arbitrary and
(sn), (tn) ⊂ Q sequences with sn → s, tn → t. Then we have |f(sn)−f(tn)| ≤ C|sn− tn|α for all
n ∈ N. Taking limn→∞ on both sides and using the continuity of f , we obtain |f(s) − f(t)| ≤
C|s− t|α. (*)
Now, note that

M = {ω ∈ Ω : ∀s, t : |Bs(ω)−Bt(ω)| ≤ C|s− t|α}
(∗)
= {ω ∈ Ω : ∀s, t ∈ Q ∩ [0, 1] : |Bs(ω)−Bt(ω)| ≤ C|s− t|α}
=

⋂
s,t∈Q∩[0,1]

{ω ∈ Ω : |Bs(ω)−Bt(ω)| ≤ C|s− t|α}︸ ︷︷ ︸
∈A

∈ A.

(More precisely (but not necessary to point this out) we have {ω ∈ Ω : |Bs(ω) − Bt(ω)| ≤
C|s− t|α} = (Bs, Bt)

−1(N) with N := {(y, z) ∈ R2 : |y−z| ≤ C|s− t|α}. Note that N ∈ B(R)2.
The process (Bs, Bt) is A-B(R)2-measurable since Bs, Bt are A-B(R)-measurable (result from
Probability theory 1), thus (Bs, Bt)

−1(N) ∈ A).
(ii) Since B( k

n
)−B(k−1

n
) ∼ N(0, 1

n
), k = 1, ..., n are i.i.d., we obtain with some Z ∼ N(0, 1):

P
(
∀k ∈ {1, ..., n} :

∣∣B(
k

n
)−B(

k − 1

n
)
∣∣ ≤ Cn−α

)
= P

( 1√
n
|Z| ≤ Cn−α

)n
= P

(
|Z| ≤ Cn

1
2
−α)n.

For n large enough, Cn
1
2
−α ≤ 1. In this case, the above term is smaller than P(|Z| ≤ 1)n → 0

(n→∞) since P(|Z| ≤ 1) < 1.
(iii) If B is Hoelder continuous w.r.t. (α,C), then it would hold for all n ∈ N and for k = 1, ..., n
that

∣∣B( k
n
)−B(k−1

n
)
∣∣ ≤ C| k

n
− k−1

n
|α = Cn−α. Thus for all n ∈ N,

P(M) ≤ P
(
∀k ∈ {1, ..., n} :

∣∣B(
k

n
)−B(

k − 1

n
)
∣∣ ≤ Cn−α

) (b)
=→ 0.

This shows that P(M) = 0, i.e. almost surely B is not Hoelder continuous w.r.t. (α,C).

(g) (i) Note that if it holds that f(t) ≤ Bt ≤ g(t) for all t ∈ Q ∩ [0, 1], then the same holds
also for t ∈ [0, 1]. Proof: For t ∈ [0, 1] we can find a sequence tn → t with (tn) ⊂ Q ∩ [0, 1]. By
assumption, f(tn) ≤ Btn ≤ g(tn) for all n ∈ N. By n→∞, f(t) ≤ Bt ≤ g(t) (*).

We have

M = {ω ∈ Ω : ∀t ∈ [0, 1] : f(t) ≤ Bt(ω) ≤ g(t)}
(∗)
= {ω ∈ Ω : ∀t ∈ Q ∩ [0, 1] : f(t) ≤ Bt(ω) ≤ g(t)}
=

⋂
t∈Q∩[0,1]

{ω ∈ Ω : f(t) ≤ Bt(ω) ≤ g(t)}︸ ︷︷ ︸
∈A

∈ A.

(ii) It holds that (the inequalities are due to the fact that the conditions in the P(·) imply the
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conditions in the P(·) in the next line):

P
(
∀k ∈ {0, ..., n} :

k

n2
≤ B k

n2
≤ 2

k

n2

)
≤ P

(
∀k ∈ {0, ..., n− 1} :

k + 1

n2
− 2k

n2
≤ B k+1

n2
−B k

n2
≤ 2(k + 1)

n2
− k

n2

)
= P

(
∀k ∈ {0, ..., n− 1} :

−k + 1

n2︸ ︷︷ ︸
− 1

n
≤...

≤ B k+1

n2
−B k

n2︸ ︷︷ ︸
iid∼ N(0, 1

n2 )

≤ k + 2

n2︸ ︷︷ ︸
...≤n+1

n2 ≤
2
n

)

≤ P
(
− 1

n
≤ N(0,

1

n2
) ≤ 2

n

)n
≤ P

(
− 1 ≤ N(0, 1) ≤ 2

)n
= an → 0,

since a := P
(
− 1 ≤ N(0, 1) ≤ 2

)
< 1.

(iii) If B would be surrounded by f and g, then for all n ∈ N it would hold that ∀k ∈ {0, ..., n} :
k
n2 ≤ B k

n2
≤ 2 k

n2 . Thus by (b),

P(M) ≤ P(∀k ∈ {0, ..., n} :
k

n2
≤ B k

n2
≤ 2

k

n2
)→ 0.

This shows that P(M) = 0, i.e. almost surely B is not surrounded by f and g.
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