Wahrscheinlichkeitstheorie I

Prof. Dr. Rainer Dahlhaus Maximilian Siebel Sommersemester 2022

Präsenzblatt 7

Aufgabe 13 (Beispiele für die Konvergenzarten).

Wir betrachten den Wahrscheinlichkeitsraum $(\Omega, \mathcal{A}, \mathbb{P}) := ([0, 1), \mathcal{B}_{[0,1)}, \lambda)$, wobei λ das Lebesgue-Maß bezeichnet. Seien $X_n : \Omega \to \mathbb{R}$, $n \in \mathbb{N}$ Folgen von Zufallsvariablen, die jeweils wie unten gegeben sind. Untersuchen Sie X_n auf stochastische Konvergenz, fast sichere Konvergenz, Konvergenz im r-ten Mittel (alle $r \geq 1$). Geben Sie im Falle der Konvergenz den Limes an.

- (a) $X_n(\omega) = \exp(-n\omega)$,
- (b) $X_n(\omega) = (-1)^n \cdot (\omega \frac{1}{2}),$
- (c) $X_n(\omega) = n^{\frac{1}{3}} \mathbb{I}_{\left[\frac{n-1}{n},1\right)}(\omega).$

Aufgabe 14 (Fast sichere Eindeutigkeit der Grenzwerte und Nutzung der Charakterisierung fast sicherer Konvergenz).

Sei $(\Omega, \mathcal{A}, \mathbb{P})$ ein Wahrscheinlichkeitsraum und $X_n, X, Y : \Omega \to \mathbb{R}$ Zufallsvariablen. Zeigen Sie:

- (a) Der stochastische Limes von X_n ist f.s. eindeutig bestimmt.
- (b) Folgern Sie: Ist $X_n \stackrel{\mathbb{P}}{\to} X$ und existiert der f.s. Limes von X_n , so ist $X_n \to X$ f.s.
- (c) Sei $r \geq 1$. Der Limes im r-ten Mittel von X_n ist f.s. eindeutig bestimmt.
- (d) Sei $X_n \stackrel{\mathbb{P}}{\to} 0$ und $0 \le X_n \downarrow$ nichtnegativ und monoton fallend. Zeigen Sie, dass $X_n \to 0$ f.s.
- (e) Seien die X_n identisch verteilt mit $\mathbb{E}|X_1| < \infty$. Zeigen Sie, dass $\frac{\min\{|X_1|,...,|X_n|\}}{n} \to 0$ f.s.

Abgabe: Keine Abgabe. Dieses Übungsblatt wird (teilweise) in den Übungen besprochen.

Homepage der Vorlesung:

https://ssp.math.uni-heidelberg.de/wt1-ss22/index.html