Wahrscheinlichkeitstheorie I

Prof. Dr. Rainer Dahlhaus Maximilian Siebel Sommersemester 2022

10. Abgabeblatt

Aufgabe 1	Aufgabe 2	Aufgabe 3	Aufgabe 4	Summe Σ

Namen:

Tutor:

Aufgabe 37 (Martingale I, 4 = 1 + 1 + 1 + 1 Punkte).

Sei $(\Omega, \mathcal{A}, \mathbb{P})$ ein Wahrscheinlichkeitsraum und $(\mathcal{F}_n)_{n \in \mathbb{N}}$ eine Filtration auf (Ω, \mathcal{A}) . Zeigen Sie:

- (a) Sind $(X_n)_{n\in\mathbb{N}}$ und $(Y_n)_{n\in\mathbb{N}}$ ($\mathcal{F}_n)_{n\in\mathbb{N}}$ -Martingale und $a,b\in\mathbb{R}$, so ist auch $(aX_n+bY_n)_{n\in\mathbb{N}}$ ein $(\mathcal{F}_n)_{n\in\mathbb{N}}$ -Martingal.
- (b) Falls $(X_n)_{n\in\mathbb{N}}$ ein Submartingal bzgl. $(\mathcal{F}_n)_{n\in\mathbb{N}}$ ist, $\phi:\mathbb{R}\to\mathbb{R}$ eine (messbare) konvexe nicht-fallende Funktion, so ist $(\phi(X_n))_{n\in\mathbb{N}}$ ein Submartingal bzgl. $(\mathcal{F}_n)_{n\in\mathbb{N}}$. Setzen Sie dabei $\mathbb{E}|\phi(X_n)|<\infty$ für alle $n\in\mathbb{N}$ voraus.
- (c) Es sei $(X_n)_{n\in\mathbb{N}}$ ein $(\mathcal{F}_n)_{n\in\mathbb{N}}$ -Martingal mit der Eigenschaft $\mathbb{E}[X_n^2] < \infty$ für alle $n \in \mathbb{N}$. Setze $X_0 := 0$. Zeigen Sie, dass die Differenzen $D_n := X_n - X_{n-1}$ erfüllen: $\operatorname{Var}(X_n) = \sum_{k=1}^n \operatorname{Var}(D_k)$.
- (d) Seien S, T $(\mathcal{F}_n)_{n \in \mathbb{N}}$ -Stoppzeiten. Zeigen Sie, dass dann auch $S \wedge T := \min\{S, T\}$ $(\mathcal{F}_n)_{n \in \mathbb{N}}$ -Stoppzeiten sind.

Aufgabe 38 (Martingale II, 4 = 1 + 1 + 2 Punkte).

Anna und Bob wetten um das Ergebnis von Münzwürfen. Anna bekommt 1 Euro von Bob, wenn 'Kopf' geworfen wird, und verliert 1 Euro an Bob, wenn 'Zahl' geworfen wird. Das Spiel endet, wenn Anna oder Bob kein Geld mehr hat. Anna startet mit a Euro und Bob mit b Euro $(a, b \in \mathbb{N})$. Die Münze zeige mit Wahrscheinlichkeit $p \in (0, 1)$ 'Kopf'.

Sei $(\varepsilon_i)_{i\in\mathbb{N}}$ eine Folge von i.i.d. Zufallsvariablen auf einem Wahrscheinlichkeitsraum $(\Omega, \mathcal{A}, \mathbb{P})$ mit $\mathbb{P}(\varepsilon_1 = 1) = p = 1 - \mathbb{P}(\varepsilon_1 = -1)$. Dann kann das Guthaben von Anna nach dem n-ten Münzwurf $(n \in \mathbb{N}_0)$ geschrieben werden als:

$$S_n := a + \sum_{i=1}^n \varepsilon_i, \quad S_0 := a.$$

Sei $\mathcal{F}_n := \sigma(\varepsilon_k : k \leq n)$ $(n \in \mathbb{N}_0)$. Gegeben sei weiter die $(\mathcal{F}_n)_{n \in \mathbb{N}_0}$ -Stoppzeit $\tau := \inf\{n \in \mathbb{N} : S_n \in \{0, a + b\}\}$, die angibt, wann das Spiel endet. Zeigen Sie:

- (a) $\mathbb{E}\tau < \infty$. Hinweis: Definieren Sie Blöcke $B_n := (\varepsilon_{(a+b)(n-1)+1}, ..., \varepsilon_{(a+b)n})$ und $\theta := \inf\{n \in \mathbb{N} : B_n = (1, ..., 1)\}$ und folgern Sie $\tau \leq (a+b)\theta$. Was ist die Verteilung von θ ?
- (b) Sei $p \neq \frac{1}{2}$. Zeigen Sie, dass $(W_n)_{n \in \mathbb{N}_0}$ mit $W_n := (\frac{1-p}{p})^{S_n}$ ein Martingal bzgl. $(\mathcal{F}_n)_{n \in \mathbb{N}_0}$ ist.
- (c) Berechnen Sie die Wahrscheinlichkeit, dass Anna gewinnt, wenn das Spiel beendet wird. Hinweis: Wenden Sie das Optional Sampling Theorem (iii) auf (W_n) und τ an. Nutzen Sie, dass $S_{\tau} \in \{0, a+b\}$.

Aufgabe 39 (Martingale III, $4 + 2^* = 1 + 1 + 1 + 1 + 1 + 1^* + 1^*$ (Bonus-)Punkte). Sei $(\Omega, \mathcal{A}, \mathbb{P})$ ein Wahrscheinlichkeitsraum und $\varepsilon_i : \Omega \to \mathbb{R}$, $i \in \mathbb{N}$ eine Folge von i.i.d. Zufallsvariablen mit $\mathbb{P}(\varepsilon_1 = 1) = p = 1 - \mathbb{P}(\varepsilon_1 = -1)$, wobei $p \in (\frac{1}{2}, 1)$. Sei $S_n := \sum_{i=1}^n \varepsilon_i$, $S_0 := 0$. Eine Filtration $(\mathcal{F}_n)_{n \in \mathbb{N}_0}$ sei gegeben durch $\mathcal{F}_n := \sigma(\varepsilon_k : k \leq n)$. Für $b \in \mathbb{Z}$ sei

$$\tau_b := \inf\{n \in \mathbb{N}_0 : S_n = b\}.$$

Zeigen Sie:

- (a) $(M_n)_{n\in\mathbb{N}_0}$ mit $M_n:=S_n-(2p-1)n$ ist ein $(\mathcal{F}_n)_{n\in\mathbb{N}_0}$ -Martingal.
- (b) τ_b ist eine $(\mathcal{F}_n)_{n\in\mathbb{N}_0}$ -Stoppzeit.

Sei nun b > 0. Zeigen Sie:

- (c) Für alle $m \in \mathbb{N}$ gilt: $\mathbb{E}[\tau_b \wedge m] \leq \frac{b}{2p-1}$. Hinweis: Wenden Sie das Optional Sampling Theorem auf M_n und $\tau_b \wedge m$ an.
- (d) $\mathbb{E}\tau_b = \frac{b}{2p-1}$. Hinweis: Wenden Sie erneut das Optional Sampling Theorem an, dieses Mal aber auf M_n und τ_b . Um $\mathbb{E}\tau_b < \infty$ zu zeigen, verwenden Sie (c) und monotone Konvergenz.

Sei nun b < 0 und $(W_n)_{n \in \mathbb{N}_0}$ das Martingal aus A38(b). Zeigen Sie:

- (e) $S_n \to \infty$ f.s.
- (f) $\mathbb{P}(\tau_b < \infty) = (\frac{p}{1-p})^b$. Hinweis: Nutzen Sie (e) und nutzen und begründen Sie die folgende Gleichung für $m \in \mathbb{N}$, vgl. P39(b):

$$1 = \lim_{m \to \infty} \mathbb{E}[W_{m \wedge \tau_b}] = \mathbb{E}[\lim_{m \to \infty} W_{m \wedge \tau_b}] = \mathbb{E}[\lim_{m \to \infty} W_{m \wedge \tau_b} \mathbb{I}_{\{\tau_b < \infty\}}] + \mathbb{E}[\lim_{m \to \infty} W_{m \wedge \tau_b} \mathbb{I}_{\{\tau_b = \infty\}}].$$

Aufgabe 40 (Martingale IV, 4 = 1 + 1 + 1 + 1 Punkte).

Eine Urne enthalte zum Zeitpunkt n=0 genau eine rote und eine schwarze Kugel. Zu jedem Zeitpunkt $n\in\mathbb{N}$ wird eine Kugel gezogen, die gezogene Kugel in die Urne zurückgelegt und eine weitere Kugel derselben Farbe hinzugefügt. Sei R_n die Anzahl der roten Kugeln nach dem n-ten Mal Ziehen (und Zurücklegen) und $M_n = \frac{R_n}{n+2}$ der Anteil der roten Kugeln in der Urne. Sei weiter $X_n := \mathbb{I}_{\{\text{Die in der } n\text{-ten Runde gezogene Kugel ist rot}\}}$ und $\mathcal{F}_n := \sigma(M_k : k \leq n)$. Zeigen Sie:

(a) Für $n \in \mathbb{N}_0$ gilt:

$$M_{n+1} = \frac{n+2}{n+3}M_n + \frac{1}{n+3}X_{n+1},$$

sowie $|M_n| \leq 1$. Ermitteln Sie $\mathbb{P}(X_{n+1} = 1 | \mathcal{F}_n)$ in Termen von M_n .

- (b) $(M_n)_{n\in\mathbb{N}_0}$ ist ein Martingal bzgl. der Filtration $(\mathcal{F}_n)_{n\in\mathbb{N}_0}$.
- (c) Es sei $\tau := \inf\{n \in \mathbb{N} : X_n = 0\}$ die Nummer der Spielrunde, bei welcher das erste Mal eine schwarze Kugel gezogen wird. Zeigen Sie, dass für $n \in \mathbb{N}$ gilt: $\mathbb{P}(\tau > n) = \frac{1}{n+1}$.
- (d) Zeigen Sie, dass $\mathbb{E}\left[\frac{\tau}{\tau+2}\right] = \frac{1}{2}$.

Abgabe: In Zweiergruppen, bis spätestens Freitag, den 29. April 2022, 9:00 Uhr per Moodle.

Homepage der Vorlesung:

https://ssp.math.uni-heidelberg.de/wt1-ss22/index.html